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9
10 ABSTRACT. Investigating the qualitative properties of two-dimensional neutral integro-differential equations of
" fractional order is the primary goal of this article. To begin with, we consider some assumptions to establish the
12 theoretical results. Then, the existence and uniqueness of the solution of the considered two-dimensional neutral
13 integro-differential equation are established using Banach’s and Krasnoselskii’s fixed point theorems. Furthermore,
e we analyze the stability of the solution by considering some suitable conditions for the initial data. Additionally, we
- have obtained conditions for the existence of positive, maximal, and minimal solutions to the problem, followed by the

Continuation theorem. The paper concludes with a few numerical examples to illustrate and validate the theoretical
16 results.

20 1. Introduction

5, A branch of Mathematical analysis known as fractional calculus extends the idea of differentiation and integration

o5 0 non-integer levels. Fractional calculus, which deals with fractional orders of differentiation and integration rather

s than just integer orders, finds applications in various fields such as modeling and simulating complex systems,
s understanding dynamical systems, enhancing control theory, representing biological phenomena, studying heat
v conduction, addressing non-local effects, and accounting for memory-related phenomena.

- Differential and integral equations serve as highly effective tools for representing and describing physical
. phenomena, finding widespread application in fields like physics, engineering, and applied mathematics. The
oo neutral differential equation is a type of differential equation that incorporates time delays in the derivatives. The
0 neutral-type differential has applications, such as infinite-dimensional neutral functional differential equations
—— employed in cell population model [1].

31

e Integro-differential equations combine integral and derivative terms and are a powerful tool for describing a

o wide range of physical phenomena as they have been employed to model Volterra’s population dynamics [2] and
o to model the emergence of cities and urban patterning [3].
— Many researchers have established the existence and uniqueness results for differential equations, integral

Z% equations, and integro-differential equations using different fixed point theorems like Banach’s fixed point theorem,
— which is the most popular theorem for determining uniqueness conditions for the solution [4], Krasnoselskii’s,
— Schauder’s, and Schaefer’s fixed point theorems are mainly used for establishing existence conditions [4, 5, 6].
— Stability analysis is a crucial part of the discussion for differential equations, integral equations, and integro-
0 differential equations like Mittag-Leffler stability, Uniform stability, Ulam-Hyers stability, and Ulam-Hyers
e Rassias’s stability [4, 7, 8].

o Recently, two-dimensional integral and integro-differential equations have collected significant interest due to
E their applications in diverse fields like population dynamics, fluid mechanics, and image processing. Numerical
v methods like the Triangular function operational matrix method, shifted Jacobi operational matrix method, and
s Chebyshev integral operational matrix method have been developed to solve two-dimensional integro-differential
o equations. Howeyver, theoretical exploration of these equations in the two-dimensional context is less extensive
— than their one-dimensional counterparts. Building upon the well-established concepts in one dimension, we are

47
4 oW extending our efforts to explore the theoretical aspects of two-dimensional integro-differential equations.

49
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In this paper, we study a two-dimensional neutral integro-differential equation of fractional order of the
following form:

M D[ ) —h(E, x B, x)] = £, %D, 1) +olSIEK(E, x.6,p)2(5.p,B(5.P)),

2) B(£,0) = o (8),
with § €1:[0,b], x€J:[0,T],0< @,B,y<1,and § = o+ 7y such that 0 < § < 1, where §D{ is Caputo

fractional derivative, o/ and of g are left Riemann-Liouville fractional integral.

o OEE %eR SDIS(C, x)—h(C, x,0(C, x))} CE,K:GoR h:IxIJXxR R, f:I1xJxR >R,
11 and g : I x J x R — R are continuous functions, where E = The set of all mappings from C([0,b] x [0,T]) to R, E
12 is a Banach space. Let 4({,0,9(£,0)) =0

13

14 The problem (1)-(2) we are investigating find its motivation from the following existing literature:

15 Freedman and Kuang [9] have established sufficient conditions for positive and bounded solutions and analyzed
16 local and global stability of the positive steady state of a class of nonlinear single species neutral differential
17 population model,

18 d

e E(x(0)+ Pt = ) = 2(0)Glx(1) x( — ),

19

20 x(0)=¢(0) >0, 6 € [-1,0],

21 where r >0, 0 < p < 1, G(x,y) is continuously differentiable function, ¢(0) is continuously differentiable on
22 [—7,0],and ¢(0) >0

23

jo|e|~]ofo]a]e]m]~

ZZ Wu and Xia [10] studied neutral partial differential equations that appear in rotating waves,
25

2 ¢iWMﬂ_bMF””»:dMM”@_mm—ﬂﬂ}%mmﬂ—amﬁ—n@—ﬁwn@—mw—n@)

27

28

29 Fu and Huang [11] studied the existence of solutions for semilinear neutral integro-differential equations of the

30 following form,
31

— d
32 E[x(t)—FF(t,x, = —Ax(t —|—/ (t —s)x(s)ds +G(t,Xp(1.x,)), t € [0,T],
33

37 X0 = (p € *@Oh

35 where —A is the infinitesimal generator of an analytic semigroup on a Banach space X, y(t) is a closed linear
36 operator defined later, F, G, and p are given continuous functions to be specified below, and %y, is an abstract
37 phase space endowed with a seminorm ||. || 4, -

38

39 Andrade et al. [12] investigated the existence of mild solutions for fractional neutral integro-differential

40 equations, which arises from an evolutionary equation,

41
o D¥(x(t) + f(t,x,)) = Ax(t —1—/ (t—s)x(s)ds+g(t,x;), t >0,

43

e X():(P,X():Xl,

44
.5 Where a € (1,2); A, B(t);>0 are closed linear operators defined on a common domain which is dense in a Banach

a6 space X, D{*h(r) represents the Caputo derivative of order & > 0, and gg (1) := (ﬁ , t >0, B > 0. The history

47 x; 1 (—o0,0] — X given by x;(0) = x(r + 0) belongs to some abstract phase space % defined axiomatically and
48 f,g:1x 9% — X are appropriate functions.

49

SE Yang et al. [13] have studied a class of neutral-type integral differential equations that arise in an epidemic
51 model, Santos et al. have established [14] the existence of mild solutions for a class of partial neutral integro-
52 differential equations, Vijayakumar and Udhayakumar [15] have explored the Sobolev-type Hilfer fractional
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1 neutral integro-differential system. Various researchers study two-dimensional integro-differential equations to
2 model population dynamics, heat conduction in materials of fading memory, etc., where the two independent
3 variables are considered as time and space or time and temperature [16, 17]. Based on the literature review of
4 two-dimensional neutral integro-differential equations, we have considered the problem (1)-(2), which we believed
5 till now no one studied this type of equation.

o2}

7 Following are the sections of this article: We have covered basic results in the second section. The existence
'8 and uniqueness of the solution to the considered problem are discussed in the third section. Next, the Ulam-Hyers
9 and Ulam-Hyers Rassias stability is analyzed in the fourth section. The continuation theorem, maximal solutions,
10 minimal solutions, and positive solutions are all covered in the fifth section. In the sixth section, we have validated
11 the results with a few examples.

13 2. Preliminaries

;5 These are the basic concepts that we require to establish the results.
6 Definition 1. For o > 0, the Riemann-Liouville fractional integral for two-dimensional function is defined as
17

0 oIEB(E, x) = F(la) [ =p)*t5(C.p1ap.

>0 Definition 2. [18] For 0 < o < 1, the Caputo fractional derivative for two-dimensional function is defined as

1 x 4 9
R a) ) P, (0.

21
> 6DYO(C, x) =

2% Lemma 1. [19] (oI%)(§D%)¥ (&, x) = 9(&, x) —9(£,0), 0 < a < 1.

2E Theorem 2.1. [20](Banach fixed point theorem) In a non-empty complete metric space J = (J,d), if there exists a

26 contraction mapping H : J — J, then there is a unique fixed point for H.
27
s Theorem 2.2. [2]](Arzela-Ascoli theorem) If Q is a compact Hausdorff metric space, a subset Y C C(Q) is said

o9 10 be relatively compact if and only if it is both uniformly bounded and uniformly equicontinuous.

?E Theorem 2.3. [2]](Krasnoselskii fixed point theorem) Let N be a closed, bounded, and convex subset of a real

81 Banach space J. Consider two operators, Hy and H,, defined on N. The operators satisfy the following conditions:
2 (1) HH(N)+Hy(N)CN,

s (2) H; is continuous on N and Hy(N) is relatively compact subset of J,

4 . . . . .
all (3) H, is a strict contraction on N, which means there exists a constant k € [0, 1) such that

% |Hi(n1) —Hi(n2)|| < x||ny —nz|| V¥ ni,n2 € N. Under these conditions, there exists an element n € N

% such that Hin+ Hyn = n.
37

% 3. Existence and uniqueness

39
40 In this section, we have established the conditions for the existence and uniqueness of the solution of the problem
a1 (1)-(2).

42 To establish the theoretical results for the problem (1)-(2), we are following these assumptions:

43
44 (Asy) Let us assume that positive constants Fj, and M, exist for the continuous function & : 1 xJ xR — R
45 such that ||A(&, x,%1(E, x)) —h(E, x,%(, x))|| < Fu||% — ]| for each (£, x) € I x J and for all ¥y, € E
46 alsoM, = sup ||h(E, x,0)].

47 (¢, x)elxJ

48 (Asy) Let us assume that positive constants F r and My exist for the continuous function f: I xJ xR — R
a9 such that || £(&, x,91(E, x)) — £(C, x,92(C, x))|| < F¢|| — D2|| for each ({, x) € I x J and for all ¥, € E

so alsoMy= sup [ f(&, x,0)].
51 (&, x)elxJ

52 (As3) Let us assume that positive constants F, and M, exist for the continuous function g : I xJ xR — R

3 Nov 2023 23:46:11 PDT
230803-SenMausumi Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION
DAMINI GUPTA, MAUSUMI SEN, R. P. AGARWAL, AND BAPAN ALI MIAH 4

such that ||g({, x,%1(C, x)) —g(¢, x,%(E, x))|| < Fg||%1 — 0|| for each (£, x) € I x J and for all ¥,%, € E

1
i also Mg = Sl.lp ||g(C7 X,O)H

3 (8, x)erxJ

4 (As4) K: G — R is continuous on D with Ky = {sup|K (&, x,6,p)| : ({, x,6,p) € G}, where
2 G={(§, x6p):0<¢<{<h0<p<x<T}

6

7 (Ass) Let there exists a positive constant My such that My = sup  ||[9(&,0)]|.

8 (¢, x)elxJ

® (Asg) Let B, = {0 € E : ||®|| < r}, B, is a closed, bounded, and convex subset of E, where r > % with

E _ Y 5 WP _ TY 5 WP
» Ki =My —i—Mh-l-MfW +K0M8F(6+1)F(ﬁ+l) and K* —Fh"’FfW +K0Fgr(5+1) YESIE

12 . . . . . . . . ..
. Firstly, we will transform the considered two-dimensional neutral integro-differential equation into the corre-
v sponding integral equation.

15

16 (8, x) —h(E, x,8(&, x)) = B(E,0)+(5,0,8(5,0)) = oIl f (S, 0, (. p))

17

o + oIl *OIEK (. x,6,p)8(5,p, B (5, P)),

19 this gives
20

o1 3 B(E, %) =B0()+h(E, x,B(E, %) +olIF(§,p,9(8,p)) +oll "Il K(S, x,6,p)2(5,p, (5, p))-
z% Theorem 3.1. Assume that assumptions (Asy) — (Ase) are satisfied. If

24 Tj/

o F,+ Fr
25 h+'fr

— <1,
(r+1)

26
o7 then problem (1)-(2) has at least one solution.

2% Proof. The operator A is defined as the sum of the two operators A; and A, according to the following
o equations:

3 (4) AB (8, x) = A1 (S, x) +AaB (S, x),

gwhere

22 5) A19(C, x) =Do(8) +h(E, x,0(, x)) + r,(ly)/Ox(x—p)Y—lf(Q"p,ﬁ(C,p))dp

Z% and

w ‘L

SO A9 = r(lé)r(lﬁ) [ [ =011 =0 'K (C. x6.p)8(s.p, 95 p))dsdp.
% STEP 1: We will show that A1 +Axu € B,V ¥,u € B,.

1A19(Z, DIl < [0+ 11, % 8(E, 1) +F(1y) | =Py 17 p.3(C Pl
44 xY XY

E and

48 x 8

o UM FgE ] 6P (E =9 K x.s.p)  s(s.p.(s.p))dsdp
o Wb W g

o <Kofsr s M DI R e R e Ty
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1 Consequently,
2
3 [A18(8, %)+ At (G, )| < [[A1B(E, ) [+ [| A2t (S, %) ]
4 x¥
= <My +F||9(8, x)|| + M, + F||9(¢, +M
B < My + Fl[9(C. )|+ Mt (9l s+ My
£ x% ¢k x® ¢k
+ KyF, » X) ||+ KoM,

7 Fers g HE It BoMy s F
% <My + Fyr+M,+F, r +M r

< My + Fpr + M, r
o "Tly+1) " T(r+1)
ol + KoF, r° l + KoM, r° Ll
— r
12 s+ NT(B+1)  TOTET(S+ ) T(B+1)
o TY T8 bP

My +M+M + KoM

= T Ry T IS+ 1) T(B + 1)
o F,+F r KoF, r° Ll
= + |+ Free—— +
v P T TE DT+ 1)
18 .
9 <Ki+K'r
20 <r
?* STEP 2: A is a contraction mapping.
23 e _
D A8 (8, x) = Bo(§) +h(E, x,8(C, X))+F(y)/o (x=p)" ' f(§,p, (&, p))dp
% Consider Y1, % € B,. Accordingly,
26
al | )
. [A181(E, x) = A1 (E, x| SFhHﬁl—%HﬂLi/ (x—p)"" ' Fyl| 9 — talldp
28 L'(y) Jo
. < Fillth 0o+ Fys 91— ]
o = frw DL
31 TY

33
v <K”|[% —ﬂzH,
34

Z% where K** = [Fh + Fy Ty +1)] < 1. This means A; exhibits the property of being a contraction mapping.

*_ STEP3: A is a continuous function and the set A, B, is relatively compact within the space E.
38

% (i) A, is continuous.

“ In the given argument, it is assumed that the sequence {3} converges to ¥, where 9; € B, Vi € N (the natural
" humbers). This implies that as n approaches infinity, the norm of the difference between ¥, and ¥ tends to zero,
‘E which means, lim,,_,c |9, — ©¥|| = 0. From this assumption, it is claimed that lim,_. A2, = Ax®. To prove this

J claim, the following inequality is derived:

= 2ty Al < s [ [ ) (6 - IR o]
i Hg(;,pﬁ(g p)) —8(5.p.B(s.p))ldgdp
o < st [ e = 9P ka6, Dldsap.

50

51 Finally, it is concluded that || A28, — A2 ¥ — O whenever @, — ©.
52
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(i1) A2B; is uniformly bounded.

1828 (E, x)[| <7,

1 B .. .
* = F(§+1) %KO[Fgr—f—Mg]. This implies ApB, C B,« for any ¥ € B,.

(iii) Ay B, is uniformly equicontinuous.
Let (81,x1),(82,x2) € I xJand ¥ € B,, then we have

[ofe|[~[ofa]a]e]n]
£
=
[¢]
=
a
~
|

—_
o

[A28 (&3 -Ao8 (G 0)|

- =
o2

X1 6
/0 /0 (1 —p)2 (& — )P 'K (G, x1,6,0)8(s, . B (S, p))dgdp

—_
w

_
- T(6)T(B)

-
>

—_
(¢,

2 6
= [ [ =) (G = 9P K (G psls. P 95 p))dsdp

—_
(o2}

7 G orx

i Sr(lg)r(lﬁ)‘/o /O (1= p)° (61— 9)P 'K (G131, 6,p)8(s, 0, B (s, p))dpdg
20 b 5-1 B-1

o = [ [ =P (G = 0P K (Gnai.psls. P, (s p))dpds

z% x2 Gl B B

2 +r(15)1“(1ﬁ)/o /0 (2 —p)3 (G = 9P 'K (G2, 6,0)8(5, 0, B (5, p))ddp
2% 2 e 5-1 B-1

2 —/0 /0 (2—p)° (&—¢)P ' K(L,x2,6,p)8(5.p,B(5,p))dgdp

28 i

5 S(;)F(lﬁ) |7 G—o Kok

3 { [ =yt = = p)*ydp+ [ f(xz—p)ﬁ-ldp}dg

= +F(15)1“(1ﬁ)/0xz(x2—f))51(KOFg+Mg)

a5 & B B O B

. { A {(Gi—¢)P = (L—¢)P ‘}dg+/§ (& —¢)P ‘dc;}dp

37 B

_ x6

o MveEsy (I?féi%g) 26-a/+¢f -4,

42
E ||A219(C1,)C1) —Azﬂ(Cz,xZ)H — 0 whenever Cl — Cz, X1 — X2.

44
e Thus, A,B, is uniformly equicontinuous. By the Theorem 2.2, A, B, becomes relatively compact.

o Since each of the criteria of the Theorem 2.3 has been fulfilled, the problem (1)-(2) has at least one solution.

*”_Theorem 3.2. Suppose that assumptions (As)) — (Ase) are satisfied. If
48

s F+F r KyF, re b 1
+Fm——— + <
50 "+ YT+ D T(B+ 1)

51
EE then problem (1)-(2) has a unique solution.
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Proof. Let us consider an operator A : B, — B,, define as

®) A(9) =1,
o AB(E, 3) = D0(E) +h(E, % B(E. 3)) +0lIF(£.p. B(E.p))
+oll *IEK (S, %,6,p)8(6.p, B(5.P)):
AB(E. 2) = 00() +h(E. 2. D(E. ) + s [ =p) (L0, B(E.p))dp
(10)

-
+F(lfs)r(lﬁ)/o /0 (x=p)° " (E = )P T'K(E, x,6.p)8(s,p, (5, p))dsdp,

-~ where 0 = Y+ . For ¥ € B,, we have

1o IADI < 100(E) 1+ (G, % 0(E )+ 5 [ = p)7 1A (Ep,9(C ) dp

I'(y) Jo

— 1

1 x S—1 -1
+77// - - B K » Mo 9 719' ) d d

% TE)TB) Jo o (x—=p)°(E—9)" '[K(E, x,6,p)llllg(s,p,0(5,p))lldsdp
19 My +F, |0 M, + Fr|| O oy

_ o
= <My + Fy||9(, x)|| + M)+ Fy|| (C’x)||1"(y+1)+ ST+ 1)
ZT X5 Cﬁ x6 CB
e sy O MG T )
= <M F M, +F L M r KyF, re bﬁ KoM re bﬁ
e s O R s O R R MG Yy ERY
2 < |Mg+M —l—MTiy—i-KM re b + F—l—FTiy—i—KF re b r
27 = T T D) T TG+ DT+ 1) "+ T TG+ DT+ 1)
Zi Kl—l—K*r

30

<
<

r.

3 This concludes that AB, C B,.

32
33

°2  Now, consider ¥, € B, such that

34

2 A&, x) = D) +h(&. %, 01(8, ) + = [ (e p) AL p. 01 (E.p))dp

e I'(y) Jo

= L1 g g

- FREITE ) ) )T 9P K x 6 Pl p.vr(e.p))dsdp
z%and

© AL, x) = D0() +h(L, x.02(C, )+ F(ly) | =Py A (C P 5a(C )

E(IZ) x ¢

2 +F(16)1“(1B)/0 /0 (x=p)° 1 (C—9)P'K(L, x,6,p)e(5,p, Ba(s, p))dgdp.

44
. Then we have,

46

47
48
49

50

51
52

[AD1(E, x) = AB(E, x)[| < [|A(E, x,B1(C, x)) —h(E, x,Ba(E, X))

v +F(1y) [ =P AP B1(E.p)) ~ £(&.p. 02(C.p) P

11 8 _ _
+F(5)F(ﬁ)/o | =P E =l K ki)

52 lg(s,p,01(¢,p)) —g(¢,p,B(s,p))lldsdp
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1 X
< _ _ —_p)71 _
< Fyllth 192H+F(y)/0 (x—p)"" Ff[[01 — Dafldp

s
2
E ! 1 1t 5—1 B—1
T T(B) —p)° H(E—6)P Ko Fy||01 — Va|ldgd
= F(3)F(ﬁ)/o /o (x=p)° H(E =) KoFy|| 9 — 9alldsdp
o » Py CB
6 <F V) — Fr— || — KoF S
> v 79 P
o Fiy+ Fp———— + KoF, 5
10
1" < KF||[ % — B[,
2 where
13
14 Y 1) B
. K= | ot By Koy L
° L(y+1) C6+1)T(B+1)

17 In consideration of the fact that A is a contraction mapping, the problem of (1)-(2) has a unique solution according

1 to the Theorem 2.1.
19

20 4. Stability analysis

21
v In the current section, we have discussed the Ulam-Hyer and Ulam-Hyer Rassias stability for the problem (1)-(2).

2 Definition 3. The problem (1)-(2) is said to be Ulam-Hyers stable if. for any given positive €, whenever there

24 exists a function ¥, x) satisfies the inequality
25

©.(13)  [§DI[0(C, )= h(C, % 9(E, 0)] ~ F(E x DL, 3) —olZlEK (S x.5.p)els.p. B(s.p))| < &
27

28 then, there must exist a solution (&, x) of problem (1)-(2), which satisfies

29

20 (14) [B(L, )~ (. 2| < kee, ky €R.

31
5 Definition 4. The problem (1)-(2) is said to be Ulam-Hyers Rassias stable if, for any given positive €y, whenever
—— there exists a function (&, x) satisfies the inequality

fg
34 (15)

s [SDI[BC )= h(E % B(C, )]~ (&, % B, 1) —olSlEK(E, .6.0)8(6,0,0(c.p)| < 8y w(E, )

36
Qz then, there must exist a solution (&, x) of problem (1)-(2), which satisfies

%(16) [9(8, x) —u(8, x)| < kreyw(§, x), ky €R.

‘E Theorem 4.1. Assume that assumptions (As1) — (Ase) are satisfied. If T"Fy < (1 — F,)I'(y+ 1) then the problem
41 (1)-(2) is Ulam-Hyers stable.

42

43 Proof. For a given € > 0, if the inequality (13) is satisfied, then there exist a function ¢({,x) satisfying

4 |9(&8,x)| < €, which can be written as

45

46 gD?v/ ﬁ(Cvx) _h(C7 x719(§7x))] _f<C7 x76(€7x)) _OI;XOI?K(Ca x,g,P)g(Q,P,ﬁ(g,p)) = ¢(C7x)

— Therefore, we have

48

:% ‘IS(C,)C) - 00(@) _h(Ca )C,IS(C,)C)) _OIJZf(Capaﬂ(g7p)) _01)2/+a01gK(C7 X,g,p)g(g,p,ﬁ‘(g,p))\
51 B xV TY

5? _’01,3/¢(C )’— (,y_|_1) €< (y+1)8‘
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Now, let (&, x) be the solution of problem (1)-(2), satisfying ©(&,0) = 9(£,0) = ¥o(&). We have,

18, x) — (8, x)| = [3(E,x) = %o(&) = (L, x,1u(E,x)) — ol £(E,p, 1(E,P))

— oIl LK (&, %,6.p)g(5,p, k(5. p))]

< [9(8,x) = %o (8) = A(E, x,9(E,x)) — ol f(£,p, (L, p))
— ol OIEK (S, x,6,p)e(5, P, B (5, ) +IA(S, %, 0(8,%)) = (&, x,u($,%))]
+ oIl f(E,p,8(E,p)) —ollf(§,p, (. P))]
+ ol £ K(8, x,6,p)8(5,p. ¥(5,p))

—OIf%IfK(C, x,6,0)8(6,p,11(S,P))|
= erll)”Fh’W x) = (&, )| +ollF|9(8, x) = p(S, )|+

02 0lE KoFe | 8(&, x) = (g, »)|.

[ofe[~[ofa]a]e]n]~

- = =
23

—_
w

-
>

_ = =

. Thus,

[9(¢, x) = (S, D[ - F] < €+ ollF[9(8, x) — (&, x)[+

T
[(y+1)
olfongoFgW(Q x)—p(E, x)|

Tv TV

98 2) = 1(E =B € o€+ oy 19 )~ r(E )

+ ol oI KoFe|9(, x) — (. )

) 1-F TYF< rr 19 s KoF,|®
|9(&, x) —u(C, x)|[ |1— h—m f _mgﬂLoxm 0F|9(C, x) — (g, x)|
T
[9(8, x) —u(E, x)| < @ —Fh)F(Y+1)—T7Ff]8
bPKyF,T(y+1)

+ F(ﬁ + 1)[(1 _Fh)r(}"" 1) _ Tny]OI)?‘ﬂ(C’ x) —,LL(C, )C)’

W W W W | W W W W W N INDINDIND DD NN = =
S|N[S[S[R[S[B[Z[S|S[S[I[S|F|R|S|N|Z|S]|e]>

39 Now, by using Gronwall’s inequality [22], we get
40 55
" 7 T3P KoF,I(y+1)

J— 19 , X)) — , X S E 87
e eGSR (rw FOI0 = BT+ 1)~ 78]

43

‘E where Ej is the Mittag-Leffler function. Therefore, |9 (¢, x) — u(&, x)| < kre with

45

46 . T? T3P KyF,T(y+1) )
F= '

E

7. (1= F)L(y+1) —T7F,]° (rm +D[(1=F)C(y+1) = T7F]

48

49 Hence, the problem (1)-(2) is Ulam-Hyers stable.

50

SZ Theorem 4.2. Assume that assumptions (Asy) — (Ase) are satisfied. If TYFy < (1 — F,)I'(y+ 1) then the problem
52 (1)-(2) is Ulam-Hyers Rassias stable.
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Proof. Let ¥ (, x) satisfy the problem (1)-(2). For a given &, > 0, if the inequality (15) holds, then there
exist a function y(x,¢) such that

j |191(C,X) - ﬁO(C) - h(C? X, ﬁl(Cvx)) - Olgf(C7p7 191(571))) - 01,3/+aOIgK(C7 X, g’p)g(gvpv ﬁl(g,P))|
5 Y

E < F(}:_l)gwllf(ga x).

% Now, let 1 (&, x) be the solution of problem (1)-(2), satisfying u;(&,0) = 9(;&,0) = 99(). We have,
9 [91(€, x) — (8, x)| = [91(E,x) = Bo(§) —h(E, x, 11 (8, x)) —oll (L, p, 11 (L, p))

= —oll "*IEK(S, %,6,p)2(5,p, i (5,P))

13 < |19'1 (gax) - 19'0(@) - h(C7 X, B (C,x)) - Ol)zlf(CJ): By (C?p))

% — oIl **OIPK (S, x,6,p)8(5, P, 1 (5, P))| + (S, %, 91(8,%)) = h(§, x, w1 (§,%))]
E +‘Olgf(C7pvﬁl(Cap))_Oljc/f(c’paul(c’p))‘

" +ol P oIE K (8, %,6,p)g(6,p B1(5,p)) — ol "L K (S, x.6.p)g(6.ptu (6,p))]
;Z < F(ﬂl)ew@, x)+Fy|01(8, x) — (8, x)| +ollFr[91 (8, x) — i (&, x)[+

21 oI 0IL KoFe | 91(8, %) — i (. x)].

z% So,

24 TY

5 [01(8, x) = (8, x)|[1 - F] < WSV’"’(C’ x)+ NeR I)Fflﬁl(C, x)— (8, x)|
- +ol oI} KoFe [ 91(8, x) = pu (8, )

= TY TY s bP

2% 1918, x) — (&, X)| |1 —F, — me < WSWW(Cv x) +oly mKoFgml(C: x) — i (E, x)|
:g ‘ﬁl(Cvx) _.ul(C7x)| < [(1 —Fh)r(Y‘f’ 1) — TYFf] EWW(Cvx)

:g bﬁKoFgF(’}’+ 1) S

3 FEE I - Ry ) - g e T el

36

37

38
30 Now, by using Gronwall’s inequality [22], we get

= TY TShBKyF,T(y+ 1
s 08 x) = (8, x)| < oFeI'(y+1)

. [(1—=F)T(y+1) - TVFf]E5 (F(ﬁ +1)[(1—-F,)C(y+1) _Tny]) eyy(C, x),

42

‘E where Ej is the Mittag-Leffler function. Therefore, |9({, x) — ui (&, x)| < kreyw(&, x) with
44
s ky = r TP KoFI(y+1) ) .

o P =BT+ )T (r<ﬁ+1>[<1—Fh>r<y+1>—mf]

% Thus, the problem (1)-(2) is Ulam-Hyers Rassias stable.

49 . . . . . . .

— 5. Positive solutions, maximal and minimal solutions, and continuation theorem

50

51 In the current section, we have established the conditions for the existence of positive solutions, maximal and

EE minimal solutions, and continuation theorem for the problem (1)-(2).
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5.1. Positive solutions. Assumptions

1
2
3 API1: The functions h: I x J x Rt = R™, f:IXJxRT - R", g: IxJ xRt - RTand K: G — R™.

4 AP2: There exist my,my,m3,My,Mr,M3 > 0 such thatm; < h < My, mp < f < M,, and m3 < g < M3, for every
5 (x,t) € I xJ. Let m =min{m,mp,m3} and M = max{M;,Mr,M3}.

6

7

Let D C E be a cone defined by D = {0 € E: 9(&, x) > 0,]|({, x)|| < p}. Then (E,D) forms an ordered
8 Banach space. We have the following theorem if we assume that A : D — D be the operator defined as in the
9 equation (10).

10
;; Theorem 5.1. Assume that assumptions AP1 and AP2 are satisfied. Then A is completely continuous.

2 Proof. According to Theorem 3.1, the operator A is bounded mapping. We will demonstrate the continuity of
3 A:D—D.Let® €D, where |9 <r.LetD={d €D: H19—1§H < F}. Then HﬁH <r4i:=ry,VOeD.

4 Since h, f, g, and k are continuous on / x J, then it uniformly continuous there. Therefore, for given € > 0,
'S there exist r; > 0 (r; < 7) such that

16

" (8 2 B(E. x) = (g, xB(E, 1) < 2
o (6. 2B, )= £(Z, %, )] < 2
20 and

o lo(g 2. B(L. x) = (g, x.B(E. 1) < =,

2 for [0 B <r, (§, x) €IxJ. If |9 —D| <ry, then © €D and ||F|| <ro. As D eD D, |F| <ro.
2% Similarly ||| < ro. Since we have HA@ —AD H < €, it follows that A is continuous. Consequently, A has a fixed
% point.

26

o7 Theorem 5.2. Assume that assumptions AP1 and AP2 are satisfied. Then the problem (1)-(2) has at least one
o8 positive solution.

2 Proof. Let D; = {0 € E: |®|| <Ky +KrM} and D, = {8 € E : |®|| < K; + Krm}. For © € DN Dy,

% we have 0 < B(¢, x) <Ky +KrM,(, x) € I xJ. Since h({, x,9(¢, x)) <M, f(¢, x,9(¢, x)) <M, and
- 8(. 1B, x) < M, we have

33

” AS(E, x) = 0(8) +h({, x, (8, x)) + F(ly)/()X(x—P)ylf(C, x,9(, x))dp

. 11 8 _ _

- +F(6)F(ﬁ)/o /0 (x=p)° " (C =) 'K(L, x,6.p)8(s.p, B(5,p))dsdp
z% 8 B

= IAB (S, Xl < Mﬁ+Mh+pr(yTi1)+K°Mgr(5T+1)r(l§+l)

% . TY KR T bP

2 + |+ fm-#—k 0 gI‘(S—i—l)F(B—I—l) r

44 <Ki+KrM,

45

46 where K= [1 + 1“(%1) —|—+KOF(§L) F(Eil)} .

47

‘E Hence, ||A®|| < ||®]|. On the other hand, for © € DNdD;, we have 0 < (¢, x) < K+ Krm, ({, x) €1 xJ.
49 As a result of the fact that A({, x,0({, x)) > m, f({, x,9(C, x)) > m, and g({, x,9({, x)) > m, we have
50 ||A®|| > Ki +Krm = |||, (see Theorem 1.2 [23]).

51 Consequently, the operator A has a fixed point in DN (D,\D;). Thus the problem (1)-(2) has at least one
52 positive solution.
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1 Theorem 5.3. Let h: I xJ xRt = RY, f:IxJxR" - R", and g:1xJxR" — RT be continuous and
2 increasing functions for each (§, x) € I X J. Let there exist cy and dy satisfying OCD;/CO < ¢, gDZdo > dy and
8 0<c¢o<dy, (&, x)€lxJ.Then problem (1)-(2) has a positive solution.

: Proof. Let ¢, d € D such that ¢ < d, then we have

= B 1 _

e Ae(3,%) = 0(0) +A(Z, (¢, ¥)+ Foy | =P (& weCp))dp

B * [t

- +r(15)r(1/3)/o /0 (x—p)° ¢ - )P IK(C, x,6,p)g(s,p,c(5,p))dgdp
10 1= .

" < %(&) +h(¢, x,d(C,x))+F(y)/0 (x—p)" ' £(E, x,d(¢,p))dp

2 x g

15 +r(15)r(lﬁ)/o /0 (x—p) M E—)PTIK(S, x,6,p)8(5,p.d(c,p))dsdp
= = Ad(C, %),

E Therefore Ac(&, x) < Ad(E, x),V (&, x) € I xJ, which gives Ac < Ad. As there exist ¢y, dp such that 0 < ¢y < d,
17 with Aco < co, Ady > dp, (see Theorem 1.3 [23]) A is compact and has a fixed point in {(c,d).
18 Therefore, according to Theorem 1.3 [23] A : {(co,do) — {co,dp) is compact. Hence A has a fixed point

E e € (c,d), which is the positive solution. This supports the argument.

20

o 5.2. Maximal and minimal solutions theorems for the problem (1)-(2). In the current section, we investigate the

o existence of both maximal and minimal solutions for the problem (1)-(2).
ZE Definition 5. Let [(, x) be a solution of problem (1)-(2) in I x J. If the inequality ¥(&, x) <I1({, x), (§, x) e [ xJ,
24 holds for every solution of problem (1)-(2) define on (&, x) € I x J, then ({, x) is said to be a maximal solution

:g of problem (1)-(2).

% Definition 6. Let I(&, x) be a solution of problem (1)-(2) in I x J. If the inequality & (¢, x) > (¢, x), ({, x) €I xJ,
2" holds for every solution of problem (1)-(2) define on (&, x) eI xJ, then l(§, x) is said to be a minimal solution
2 of problem (1)-(2).

29

20 Theorem 5.4. Suppose h: I xJ xRT =R, f:IxJxRT - RT, g:IxJxRT > R", and K: G— R" are
31 continuous and non-decreasing functions defined on the set E. Let q and g, be two positive constants such that
3 q1 < q2. If the following inequalities hold:

33

34 q1

il <Il<
:E 8+190(C)+h(é,7 xa‘]l)‘FOI}c/f(C:PyCIl)+OI)§OI(?K(C7 xvgap)g(Gap7q1)

z% q2

38 8+60<€) +h(€7 x>q2) +01)2,f(€7p7q2)+01)660]gl<(€7 xagap)g<gapvq2)

3E Then there exists a maximal and minimal solution of problem (1)-(2) on I X J.

40 Proof. The fractional integral equation of the problem (1)-(2) is
41

e (G, x) = Bo(8) +A(C, x,B(E, X))+013f(C,P,19(C,P))+01301?K(C, x,6,P)8(s,p, (¢, p))-

‘E Consider the fractional order integral equation

;% (17) ﬁ(C? X) = 8+130(C)+h((:7 x,ﬁ(C, 'x)) +01)2/f(C7p719(C7p)) +01x6()IgK(C7 X,g,p)g(g,p,ﬁ(g,p)),

46 where € > 0. Then ¥({, x) given by equation (17) is solution of problem (1)-(2) in (¢1,¢2), (§, x) € I x J, for
47 some constants g1, g» > 0 such that

48 q1

i <1<
‘E 8+1'90(C)+h(C7 x7q1)+01)2/f(C7p7q1)+OI)§OIgK(C7 x7§=p)g(§7p7511)

50

il q2

51 .
5? 8+ﬁ0(€)+h(C7 vaZ)+OI)2/f(C:P76]2)+01x501§K(C7 xvgvp)g(g7p7q2)
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Now, let 0 < & < & < €. Then we have ¥, (0,0) < U, (0,0). Thus we have to show that

i

2

3

o (18) Ve, (, x) < B, (E, x), V (£, x) €1xJ.

° Consider it to be false. Then there exist a ({,x;) such that e, (G1,x1) = Vg, (G1,x1) and B¢, (£, x) < V¢, (E, x),
Sy (¢, x) e I xJ. Since h, f, g are monotonic non-decreasing function in 1, it follows that

7

i h<C7 X, ﬁez(ga x)) S h(C? X, 1981 (C: x))a

9

E f(Ca X, ﬁ&‘z(Cv )C)) S f(C7 X, 1981(C7 x)):

11

— and

12

F g(C7 X, ﬁez(éa X)) S g(C» X, 1981(@7 x))

14 Consequently, using equation (17), we get

15

. Be, (C1.x1) = &+ o (81) +1(E1,x1, Ve, (G1,%1)) + ol £(E1, Py e, (G1,p))
" + 012 08 K(§1,21,6,p)8(5,P, B (6, P))

18

g <&+ 00(C1) +h(clax1719£1 (Cbxl)) +0[)Z]f(§17p7 1981(C17p))
2 o83 olf K(&1,%1,6,P)2(5,p, B¢, (5.P))

L = g, (G1,x1),

22

ZE which defies the fact that g, ({1,x1) = O¢, ({1,x1). As a result inequality (18) is true. That is, there exists a
24 decreasing sequence &, such that &, — 0 as n — o and li_r>n B¢, (€, x) exists uniformly in (&, x) € I x J. We write
n—oo

% this limiting value by (£, x). Evidently, by the uniform continuity of 4, f, and g, the equation
26

27 Ug, (C1,x1) = &+ Bo(81) +1(&1,x1, 0, (&1,x1)) + ol f(E1, P, Ve, (81, P))

28

= + oI olf K (81,31, 6.p)8(5.p, e, (S, P)),

29
30 yields that /({, x) is a solution of problem (1)-(2), let ¥(&, x) be any solution of problem (1)-(2) in (§, x) € I x J.

31 Then

= 9(C, %) < £+ 00() +h(G, x,9(L, 1) +ollF(S,p,B(E,p))
:g +OI)?OI§K(C7 x,g,p)g(g,p,ﬁ(g,p)),

® — 9:(C, %)

36

37 Since the maximal solution is unique, it is clear that ¢ (¢, x) tends to /({, x) uniformly in ({, x) € I x J as
38 ¢ — 0, which indicates the existence of maximal solution for the problem (1)-(2). Similarly, we can demonstrate

39 the existence of the minimum solution.
40

41 5.3. Continuation theorem. This section examines the continuation of the solution to the problem (1)-(2) for the
‘E particular case 0 < ¥y < 1, @ = 0, and 8 = 1, then the corresponding integral equation of problem (1)-(2) reduces
43 to

ﬁ 6(Ca )C) = ﬁO(C) +h(§7 xaﬁ(C7 )C)) +OI)2/f(C7pa19(C7p))
© 19 ¢
46 +oIZ/0 K(C, x,6,p)g(s,p,0(s,p))ds.

47

‘E Theorem 5.5. Let h(E, x,0(&, x)), (&, x,8(&, x)), g(&, x,9(&, x)) and K(&, x,g,p) are continuous functions
499 on E, then

;i limyﬁzol)?{f(é,paﬁ(/;?p)) + s K(¢G, x,g,p)g(g,p,ﬁ(g,p))dG}
2 = oli {F(6.p. B(L.p))+ JF K(L, x,6.p)8(5.p. B(s.p))dp |
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Proof. We have

= ¢

° o { F(Ep. 0P+ [ K(E x..pels.p. 006 p))ds |

5 ¢

6 —ol; {f(C,p,ﬂ(C,p)H/o K(C, x,g,p)g(g,p,ﬁ(g,p))dg}‘
9 1 ~ 1 .

. 54F004<x—pv1f@4x0@4»wp—rmgg<x—p>1f@4x0@4»wp

o .

% F(ly)/o/o(x—p)HK(C,x,g,p)g(c,p,ﬁ(g,p))dgdp

14 x L

z —&;AA@FMUHQ%w%@%ﬁQMMMP

7. (L e L oy

19 1> a 1= . ¢

2 +‘<Fm/0 (x—p)” l_r(z)/o (x—p) ]>/0 K(¢, x,6,p)g(g.p,0(g.p))dgdp|.
22 Slncer Jo(x=p)7~ ﬁfg(x—p)“l,as Yy—z,z=1,2,3,......

2i we get the result.

24
-5 Theorem 5.6. If the solution ©(, x) of eq. (19) exists, and if ¥y(C, x) is the solution of problem (1)-(2), then

oo M 5(C, 3) = 01(C,

27
os  Proof. We have

Zi 197(C7 x) = ﬁO(C) +h(C7 X, ﬁy(g x)) +01xyf(§»Pal9Y(C7P))

0 (20) ¢

31 +oIZ/O K(C, x,6.p)g(s.p, Vy(¢, p))dg

3Eand

;i % (8, x) =0(8) +h(E, x,01(E, X)) +oli f(§,p,01(E,p))

@D e

— +olx/0 K(C, x,6,p)g(s,p, (s, p))ds.

3EThen

o [0, 5~ 31(Z. )|

:2 < ||A(&, x, (¢, x)) —h(&, x,01(C, )| + ||l (.. 0(E.P)) — oLt F(E.p, 1 (E,p))|]
e ¢

e + 013/0 K(C, x,gjp)g(g,p,ﬁy(gap))dg—ol,l/O K(C, x,6,p)g(s,p,t(g,p))dg
46 Y

7 < Fil| 98, x) = Di(& \|+;+1 Frl[9/(, x) = 91(Z, %)

® + ol (E.p,91(8.p)) o F(&.p, 1. p))[| + TH)FKoHﬁy x) =% (S, )|

51

52

C 1
+(013/0 K(¢, x,g,p)g(g,p,ﬁl(g,p))dg—olx/0 K(¢, x,g,p)g(g,p,ﬂl(g,p))dQH.
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1 Thus,
el [i-me e T rk] o o) —ottf(Cp.ouE )]
3 Yy — VUl §|: —I'p— f— g 0:| 0 P, U1(6,P)) —0 ,P,U1(6,P
0 Lly+1) 7 T(r+1) ! !
S . [* ¢
B + olx/O K(¢, x,g,p)g(g,p,ﬁl(g,m)ds—olx/0 K(S, x.6,p)8(s,p,B1(s,p))ds|| ¢
7
Ewhere F, + Iy +1)Ff+ Ty +1)F Ko < 1 (from the uniqueness theorem). The proof is complete as we have
9

’ H — 0 as Y — 1, which is in accordance with Theorem 5.5.

—_
o

-
-

6. Numerical examples

12
13 Exmaple 1. Consider the problem

14 X% e x xc2eb(1+
s 60r[o(E 0 cosmg T ind (€, 0| = CE0E, 0 ottt UIRIE Ry )
16

.7~ with the initial condition ©(¢,0) = %({) = &, and (¢, x) € [0,1] x [0, 1].

s Here we have,

. 2

19 hE, x,0(&, x)) = cosﬂ:CZsinﬁ(C, x),
_ e_§2x

gt F(E %9 0) = S50 ),
23 _ xg?et(1+p?)

27 K(Cv x7g7p)_f

o5 and

- C4x2

2 (8, %8¢, %)) = = B(C, ).

- As all the assumptions are satisfying for the functions 4, f, K, and g, therefore the values are given as F, = %,
— _ 1 _e _ 1
29 Ff—m, KO—Z,anng—E.

5 This leads to

31 1 1 1 e 1 1

31 K=ot — (=

32 4+(10> F(}/+1)+(4> (16) LO+0r(p+1)
33 Case I: For a particular value of a = %, B = %, and y = %, this gives

34

— 1 1 1 e 1 1

= ()3 (&) et
% 4 10 (9/8) ( ) 16 ) I'(5/4)T'(5/4)
a7 =0.45958 < 1.

3E Consequently, the problem has a unique solution.
39 Case II: For a particular value of o = }T, B = %, and y= %, this gives

A K i*( 1) (41/3)+(e> <116> r(19/121)r(3/2)

42

. =0.41573 < 1.

44 Consequently, the problem has a unique solution.
45  The approximate solution to the problem (23) is given by

46 2 X ,§2

a 8.(8, %) = o teosml smﬁn_l@,xwr(ly) [ oy P o € pyap

® v g 20t

o b g ep RISy pyacap,

51 For n =1, we have the approximate solution ¥, for Case I and II as shown in Figures 1 and 2, respectively.

52
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0.2 0.4
" ' . " ' 0.2 0
12 x axis 0 o ¢ axis x axis 0 o ¢ axis

13 Figure 1: Graph for the approximate solution ¥, of Figure 2: Graph for the approximate solution ¥ of
14 problem (22), where @ = %, B= }1, Y= %. problem (22), where @ = }1, B= %, Y= %

15

E Figure 1 and Figure 2 represent the approximate solution 9, for the problem (22), but they correspond to
17 different fractional order values. For the particular values of &, 3, and 7, the first figure covers a broader range
18 than the second figure.

19

21 Exmaple 2. Consider the problem

2L c e & xg3

2 (23) (DY |9(E, x) —sin2x—- (24 9(E, 1)) | = - (1+8(E, X))

23

24 2 (p?+¢)

- a B 2(E"+43) e

25 tololp pem = | 2+ —5—9(¢,p)
26

27 with the initial condition ¥(&,0) = ¥(&) =0. and (¢, x) € [0,1] x [0,1].
28  Here we have,

. h(E, x,9(C, %) = sin2xe;éx 2+9(C, %)),
FE 208 0) =2 (143(C. ).

= K(C, x,6,p) ngzw,

35 and

50 D) =5+ (e, ).

3s As all the assumptions are satisfying for the functions &, f, K, and g, therefore the values are given as Fj, = %,
39 1, — 1 _>5 _ &2

:EFf— e KO—E,anng— T—z

40 This leads to

“ oL (L L (> e 1

2 10 \4)T(y+1) \16)\12) TS+ DT(B+1)
43

‘E Case I: For a particular value of o = %, B= }1, and y = %, it gives

45 . 1 1 1 5 e? 1

46 K'=-+{31 ST 12

4 10 \4)T1(6/5)  \16) \ 12 ) T(13/10)[(5/4)
s —0.608828 < 1.

48

— Consequently, the problem has a unique solution.

49
0 Case II: For a particular value of @ = %, B= %, and y= %, it gives

51 .1 1 1 5\ (¢ 1

v Kf=—+ (= + = - -
52 10 4)T1(1/3) 16 12 ) I'(11/6)I°(8/7)
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17 =0.455738 < 1.
2 Consequently, the problem has a unique solution.
2 The approximate solution to the problem (23) is given by
4 el 1 y—lPCs
% (€, x) = sin2x— (24 Bu-1 (S, x))+m/0 (x=p)" = - (1+ D1 (8, p))dp
i Il LN S PP BB (S ) BN
' — = — - - (N dgdp.
B +F(5)F(ﬁ)/o /0 (x=p)°(E =) ps" e | PS+ 5 Oa-1(s,p) | dgdp
9

1o For n =1, we have the approximate solution ¥ for Case I and II, as shown in Figures 3 and 4, respectively.

9 axis

0.8

0.4 0.6

0.4

0.2 -
i 0.2 0 ’ 0.2 axis 0
>3 x axis 0 o ¢ axis X axis 0o © ¢

o4  Figure 3: Graph for the approximate solution ¥¥; of Figure 4: Graph for the approximate solution ¥ of
25 problem (23), where @ = 1—10, B = %, Y= % problem (23), where @ = %, B= %, Y= %

26

ZZ Figure 3 and Figure 4 represent the approximate solution ¥; for the problem (23), but they correspond to
28 different fractional order values. For the particular values of , 3, and 7, the third figure covers a broader range
29 compared to the fourth figure.

30

31 7. Conclusion

32 . . . . . c .
— Two-dimensional IDEs have indeed attracted a lot of research interest in recent years due to their significance in

v various fields of science and engineering. Theoretical results and analytical and numerical solutions for these
5 types of problems are of great interest to researchers. Several numerical methods have been developed for solving
— two-dimensional IDEs, including two-dimensional Triangular function, Haar wavelet, Tau method, and meshless
p— methods.

3? In this paper, we have discussed the existence and uniqueness of the solution of the considered two-dimensional
— neutral integro-differential equation of fractional order by using Banach’s and Krasnoselskii’s fixed point theorems
— and then we have discussed Ulam-Hyers and Ulam-Hyers Rassias’s stability of the considered problem. Addition-
e ally, we obtained a positive solution, maximal and minimal solution, and Continuation theorem. Validated our
— results with a few examples. In future work, we can find the numerical solution to the considered problem and
i establish qualitative properties for various types of two-dimensional integro-differential equations.

:% Appendix A. Coding for examples.

46 Figure 1. [X,Y] = meshgrid(0:0.05:1,0:0.05:1);

47 Z = 0.0625. % X + cos(pi. x X). x 0.015625. x Y.%. x 5in(0.0625. * Y) + 0.04444. x X. x exp(—X.?). x Y.1.125 +
48 0.017651.%X.0.25. x exp(—X). % ¥.3.25. % (2.8444 + Y.2. % 2.471191);

49 surf(X,Y,Z)

50 colorbar

51 mycolors=[100;110;001];

52 colormap(mycolors);
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1 Figure 2. [X,Y] = meshgrid(0:0.05:1,0:0.05:1);

2 7Z=0.0625. %X + cos(pi. xX).*0.015625. % Y.2. % 5in(0.0625. * Y) + 0.028125. * X. x exp(—X.2). x ¥.1.3333 +
3 0.005328.%X.5.5. % exp(—X).*Y.%.5833. % (0.83822 4 V.2, x0.61245);

4 surf(X,Y,Z2)

5 colorbar

6 mycolors=[100;110;,001]J;

7 colormap(mycolors);

8

o Figure 3. [X,Y]=meshgrid(0:0.05:1,0:0.05:1);

10 Z=02.xexp(—X.xY).*sin(2.xY) + 1.04166667. x (X.?). x ¥.1.14285714 + 0.36589. * (X2 + X. x ¥ + 3). *
11 X.3.14285714.%Y.2.833333;

12 surf(X,Y,Z)

13 colorbar

142 mycolors=[100;110;001];

15 colormap(mycolors);

% Figure 4. [X,Y] = meshgrid(0:0.05:1,0:0.05:1);

o Z=02. xexp(—X.xY). xsin(2.xY) +1.53125. % (X.3). x¥.1.14285714 4+ 0.157576569. % (X 2 + X. ¥ Y +3).
o X.3.14285714. xY.%2.833333;

— surf(X,Y,Z)

20

o colorbar

> mycolors=[100;110;001];

e colormap(mycolors);

24
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