Open Access
June, 2009 Triple Hilbert transforms along polynomial surfaces in $\mathbb{R}^4$
Anthony Carbery , Stephen Wainger , James Wright
Rev. Mat. Iberoamericana 25(2): 471-519 (June, 2009).

Abstract

We investigate the $L^2$ boundedness of the triple Hilbert transform along the surface given by the graph of a real polynomial $P$ of three variables. We are interested in understanding the relationship between the geometric properties of the Newton polyhedron of $P$ and the analytic property of $L^2$ boundedness.

Citation

Download Citation

Anthony Carbery . Stephen Wainger . James Wright . "Triple Hilbert transforms along polynomial surfaces in $\mathbb{R}^4$." Rev. Mat. Iberoamericana 25 (2) 471 - 519, June, 2009.

Information

Published: June, 2009
First available in Project Euclid: 13 October 2009

zbMATH: 1189.42003
MathSciNet: MR2554163

Subjects:
Primary: 42B15

Keywords: Hilbert transform , Newton polyhedron , Oscillatory integrals

Rights: Copyright © 2009 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.25 • No. 2 • June, 2009
Back to Top