Translator Disclaimer
Decembar, 2007 Weak type estimates associated to Burkholder's martingale inequality
Javier Parcet
Rev. Mat. Iberoamericana 23(3): 1011-1037 (Decembar, 2007).


Given a probability space $(\Omega, \mathsf{A}, \mu)$, let $\mathsf{A}_1, \mathsf{A}_2, \ldots$ be a filtration of $\sigma$-subalgebras of $\mathsf{A}$ and let $\mathsf{E}_1, \mathsf{E}_2, \ldots$ denote the corresponding family of conditional expectations. Given a martingale $f = (f_1, f_2, \ldots)$ adapted to this filtration and bounded in $L_p(\Omega)$ for some $2 \le p < \infty$, Burkholder's inequality claims that $$ \|f\|_p \sim_{\mathrm{c}_p} \Big\| \Big( \sum_{k=1}^\infty \mathsf{E}_{k-1}(|df_k|^2) \Big)^\frac12 \Big\|_p + \Big( \sum_{k=1}^\infty \|df_k\|_p^p \Big)^\frac1p. $$ Motivated by quantum probability, Junge and Xu recently extended this result to the range $1 < p < 2$. In this paper we study Burkholder's inequality for $p=1$, for which the techniques must be different. Quite surprisingly, we obtain two non-equivalent estimates which play the role of the weak type $(1,1)$ analog of Burkholder's inequality. As application we obtain new properties of Davis decomposition for martingales.


Download Citation

Javier Parcet. "Weak type estimates associated to Burkholder's martingale inequality." Rev. Mat. Iberoamericana 23 (3) 1011 - 1037, Decembar, 2007.


Published: Decembar, 2007
First available in Project Euclid: 27 February 2008

zbMATH: 1155.46033
MathSciNet: MR2414501

Primary: 42B25, 60G46, 60G50

Rights: Copyright © 2007 Departamento de Matemáticas, Universidad Autónoma de Madrid


Vol.23 • No. 3 • Decembar, 2007
Back to Top