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The fractional maximal operator and
fractional integrals on variable Lp spaces

Claudia Capone, David Cruz-Uribe, SFO and Alberto Fiorenza

Abstract
We prove that if the exponent function p(·) satisfies log-Hölder

continuity conditions locally and at infinity, then the fractional maxi-
mal operator Mα, 0 <α< n, maps Lp(·) to Lq(·), where 1

p(x)− 1
q(x) = α

n .
We also prove a weak-type inequality corresponding to the weak
(1, n/(n − α)) inequality for Mα. We build upon earlier work on
the Hardy-Littlewood maximal operator by Cruz-Uribe, Fiorenza and
Neugebauer [3]. As a consequence of these results for Mα, we show
that the fractional integral operator Iα satisfies the same norm in-
equalities. These in turn yield a generalization of the Sobolev em-
bedding theorem to variable Lp spaces.

1. Introduction

Given an open set Ω ⊂ R
n, and a measurable function p(·) : Ω → [1,∞), let

Lp(·)(Ω) denote the Banach function space of measurable functions f on Ω
such that for some λ > 0, ∫

Ω

|f(x)/λ|p(x) dx < ∞,

with norm

‖f‖p(·),Ω = inf

{
λ > 0 :

∫
Ω

( |f(x)|
λ

)p(x)

dx ≤ 1

}
.

These spaces are referred to as the variable Lp spaces. They are a special
case of the Musielak-Orlicz spaces (cf. Musielak [23]), and generalize the
classical Lebesgue spaces: when p(x) = p0 is constant, Lp(·)(Ω) = Lp0(Ω).
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The variable Lp spaces are of interest for their applications to model-
ing problems in physics, and to the study of variational integrals and par-
tial differential equations with non-standard growth conditions. In the past
decade they have been considered by a number of authors; see for example
[1, 9, 11, 12, 13, 17, 18, 20, 22, 26, 28, 31] and the references they contain.

We are interested in extending the machinery of classical harmonic analy-
sis to the variable Lp spaces. The first step was to determine sufficient con-
ditions on p(·) for the Hardy-Littlewood maximal operator to be bounded
on Lp(·)(Ω). Recall that given a locally integrable function f , we define the
maximal function by

Mf(x) = sup
B�x

1

|B|
∫

B∩Ω

|f(y)| dy,

where the supremum is taken over all balls B containing x. In [3], Cruz-
Uribe, Fiorenza and Neugebauer proved the following result. For brevity,
hereafter let

p− = ess inf
x∈Ω

p(x), p+ = ess sup
x∈Ω

p(x).

Theorem 1.1. Given an open set Ω ⊂ R
n, let p(·) : Ω → [1,∞) be such

that 1 < p− ≤ p+ < ∞. Suppose further that p(·) satisfies

|p(x) − p(y)| ≤ C

− log |x − y| , x, y ∈ Ω, |x − y| < 1/2,

and

|p(x) − p(y)| ≤ C

log(e + |x|) , x, y ∈ Ω, |y| ≥ |x|.

Then the Hardy-Littlewood maximal operator is bounded on Lp(·)(Ω).

Theorem 1.1 was first proved by Diening [5] in the case when Ω is
bounded; in this case only the first continuity condition is needed. He
later extended it to unbounded Ω with the stronger hypothesis that p(·)
is constant outside of a large ball. The full result was proved independently
by Nekvinda [24] with the second condition replaced by a somewhat more
general condition. (See Appendix I below.) Both of these continuity condi-
tions are, in some sense, close to necessary: see the examples in [3] and [25].
Recently, however, Diening [7] discovered a complicated necessary and suf-
ficient condition on the exponent function p(·) for the maximal operator to
be bounded on Lp(·)(Rn), which shows that (1.2) and (1.3) are not necessary.
In fact, Lerner [21] has constructed an example to show that p(·) does not
need to be continuous.
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Remark 1.2. As this paper was being prepared, we discovered a small but
significant error in the proof of Theorem 1.1 in [3]. A correction appeared
in [4]. In Section 4 we give a simpler proof and discuss the connections with
Theorem 1.3 below.

1.1. The Fractional Maximal Operator

In this paper we generalize Theorem 1.1 to the fractional maximal operator.
Given α, 0 < α < n, define Mαf by

(1.1) Mαf(x) = sup
B�x

1

|B|1−α/n

∫
B∩Ω

|f(y)| dy,

where the supremum is again taken over all balls B which contain x. In the
limiting case α = 0, the fractional maximal operator reduces to the Hardy-
Littlewood maximal operator. For 0 < α < n, Mα does not map Lp into
itself, but instead satisfies the following norm inequality: if 1 < p < n/α and
q is such that 1/p − 1/q = α/n, then Mα : Lp(Ω) → Lq(Ω). If we assume
that p(·) satisfies the above continuity conditions, then this result extends
to variable Lp spaces.

Theorem 1.3. Given an open set Ω ⊂ R
n and α, 0 < α < n, let p(·) : Ω →

[1,∞) be such that 1 < p− ≤ p+ < n/α. Suppose further that p(·) satisfies

(1.2) |p(x) − p(y)| ≤ C

− log |x − y| , x, y ∈ Ω, |x − y| < 1/2,

and

(1.3) |p(x) − p(y)| ≤ C

log(e + |x|) , x, y ∈ Ω, |y| ≥ |x|.

Define q(·) : Ω → [1,∞) by

(1.4)
1

p(x)
− 1

q(x)
=

α

n
, x ∈ Ω.

Then the fractional maximal operator is bounded from Lp(·)(Ω) to Lq(·)(Ω).

In the setting of classical Lebesgue spaces, Theorem 1.3 follows imme-
diately from the boundedness of the Hardy-Littlewood maximal operator.
In fact, using Hölder’s inequality it is straightforward to show that

(1.5) Mαf(x) ≤ ‖f‖1−p/q
p,Ω Mf(x)p/q, x ∈ Ω.
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The desired inequality then follows immediately. When Ω is bounded this
argument can be adapted to the case of variable Lp spaces, but inequal-
ity (1.5) is false in general. (See Proposition 3.3 and Example 3.4 below.)
However, for unbounded sets a weaker version of this inequality still holds
(Propositions 3.1 and 3.2 below), and this is sufficient to prove the desired
result.

Remark 1.4. Recently, Kokilashvili and Samko [19] proved norm inequali-
ties for a variable fractional maximal operator, with the constant α replaced
by a function α(·).

1.2. Weak-type Inequalities

We have also generalized the weak-type inequality for the fractional maximal
operator. In the classical case, Mα is not bounded on L1, but the following
weak (1, n/(n − α)) inequality holds:

(1.6) |{x ∈ R
n : Mαf(x) > t}| ≤ C

(
1

t

∫
Rn

f(x) dx

)n/(n−α)

.

When α = 0, Cruz-Uribe, Fiorenza and Neugebauer [4] proved an analog of
this inequality. To state it, recall that a function w ∈ RH∞ if there exists
C > 0 such that for all cubes Q,

C

|Q|
∫

Q

w(x) dx ≥ ess sup
x∈Q

w(x).

Theorem 1.5. If p(·) : R
n → [1,∞] is such that 1/p(·) ∈ RH∞, then there

exists C > 0 such that for all t > 0,

|{x ∈ R
n : Mf(x) > t}| ≤

∫
Rn

( |f(x)|
t

)p(x)

dx.

This modular inequality is remarkable since it requires minimal assump-
tions on p(·): the RH∞ condition is satisfied if p+ < ∞, and it holds even
for unbounded p(·). However, there does not seem to be a generalization
of Theorem 1.5 analogous to (1.6) since in the latter the exponent appears
outside the integral.

To avoid this problem we follow a suggestion made by Diening, Hästö and
Nekvinda [8] and rewrite (1.6) as a norm inequality. Let p =1; then q= n

n−α

and (1.6) becomes
sup
t>0

t‖χ{Mαf(x)>t}‖q ≤ C‖f‖p.

This inequality has a natural extension to variable Lp spaces.
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Theorem 1.6. Given an open set Ω ⊂ R
n and α, 0 ≤ α < n, let p(·) :

Ω → [1,∞) be such that 1 = p− ≤ p+ < n/α. Suppose further that p(·)
satisfies (1.2) and (1.3) and q(·) is defined by (1.4). Then

(1.7) sup
t>0

t‖χ{Mαf(x)>t}‖q(·), Ω ≤ C‖f‖p(·),Ω.

Remark 1.7. The key difference in the hypotheses of Theorems 1.3 and 1.6
is that in the latter we need p−=1; when p(·)=1 then (1.7) reduces to (1.6).

1.3. Fractional Integrals

The fractional maximal operator is of interest because it is the natural max-
imal operator associated with the fractional integral operators (also known
as the Riesz potentials). For 0 < α < n, define the fractional integral of
order α by

(1.8) Iαf(x) =

∫
Ω

f(y)

|x − y|n−α
dy, x ∈ Ω.

As a consequence of Theorems 1.3 and 1.6 and an inequality due to
Welland [30] relating Mα and Iα, we prove the following results.

Theorem 1.8. If Ω, α, p(·), and q(·) are as in Theorem 1.3, then the
fractional integral operator Iα is bounded from Lp(·)(Ω) to Lq(·)(Ω).

Theorem 1.9. If Ω, α, p(·), and q(·) are as in Theorem 1.6, then the
fractional integral operator Iα satisfies the weak-type inequality

(1.9) sup
t>0

t‖χ{|Iαf(x)|>t}‖q(·), Ω ≤ C‖f‖p(·),Ω.

Theorem 1.9 is completely new. The boundedness of Iα has been con-
sidered by several other authors. Samko [27] proved Theorem 1.8 assuming
that Ω is bounded, p(·) satisfies (1.2), and the maximal operator is bounded.
(Note that given Theorem 1.1, his second hypothesis implies his third.)

Theorem 1.8 can also be proved as a consequence of Theorem 1.3 and
a result by Diening [6], which is a generalization of an inequality like (1.5)
(due to Hedberg [16]) relating Iα and the maximal operator. Our approach
is somewhat simpler. In the statement of his result Diening assumed that
p(·) is constant outside of a large ball, but this stronger hypothesis is only
needed to use his version of Theorem 1.1.

Kokilashvili and Samko [19] proved Theorem 1.8 on R
n with Lq(·) replaced

by a certain weighted variable Lp space. (They actually consider a more gen-
eral operator Iα(·) where the constant α in (1.8) is replaced by a function α(·)).
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1.4. The Sobolev Embedding Theorem

As an immediate application of Theorem 1.8, we extend the Sobolev em-
bedding theorem to variable Lp spaces. Given a positive integer k, define
the variable Sobolev space W k,p(·)(Ω) to be the Banach space of functions f
such that for every multi-index α with |α| ≤ k, the derivatives Dαf (in the
sense of distributions) are in Lp(·)(Ω). (See Kováčik and Rákosńık [20] for
more details.) The classical Sobolev embedding theorem (see, for example,
Ziemer [32]) is that if 1 < p < n/k and Ω is an extension domain, then
W k,p(Ω) ⊂ Lq(Ω), where 1/q = 1/p − k/n. We generalize this result in the
special case when Ω = R

n.

Theorem 1.10. Let p(·) : R
n→ [1,∞) be such that 1<p−≤p+ <n and (1.2)

and (1.3) hold. If k is an integer such that p+ <n/k, and if we define q(·) by

1

q(x)
=

1

p(x)
− k

n
, x ∈ R

n,

then W k,p(·)(Rn) ⊂ Lq(·)(Rn).

Theorem 1.10 follows immediately from Theorem 1.8, and the proof is
essentially identical to the proof in the classical setting—see, for instance,
Ziemer [32, p. 88]. This proof assumes that C∞

c (Rn) is dense in W k,p(·)(Rn),
but this is the case since p(·) satisfies (1.2) and (1.3). (See Samko [28],
Diening [6], or [2].)

Diening [6] gave essentially the same proof of Theorem 1.10; again he
assumed that p(·) is bounded outside of a large ball in order to use his
version of Theorem 1.1.

There have been many attempts to extend the Sobolev embedding theo-
rem to variable Lp spaces. Kováčik and Rákosńık [20] proved a weak version,
assuming that the domain Ω is bounded and p(·) is continuous on Ω̄, but
with Lq(·) replaced by Lq(·)−ε for any ε > 0. Edmunds and Rákosńık [9]
proved a version assuming that Ω is bounded and has Lipschitz boundary,
and p(·) is a Lipschitz continuous function on Ω̄. More recently [10] they
improved their result by showing they could assume that p(·) ∈ W 1,s(Ω),
n < s < ∞, which in turn implies that p(·) is Hölder continuous (see Gilbarg
and Trudinger [14, section 7.7]). Finally, Diening [[6], Corollary 5.3] proved
the more general embedding theorem when Ω is bounded and has Lipschitz
boundary, assuming only that p(·) satisfies (1.2).
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1.5. Organization

The rest of this paper is organized as follows. In Section 2 we gather some
preliminary lemmas about variable Lp spaces. The heart of the paper is
Section 3 where we prove Theorem 1.3. In Sections 4 and 5 we prove The-
orem 1.6. In Section 4 we prove an inequality for averages over balls which
lies at the heart of the proof. As a corollary we are able to give a new proof
of Theorem 1.1 which in turn leads to a conjecture related to the proof of
Theorem 1.3. In Section 5 we use this inequality to prove Theorem 1.6. In
Section 6 we prove Theorems 1.8 and 1.9. Finally, in Appendix A we con-
sider the relationship between condition (1.3) and the more general condition
(given for the case Ω = R

n) introduced by Nekvinda [24].
Throughout the paper, notation will be standard or defined as needed.

We will assume that the reader is familiar with the basic properties of vari-
able Lp spaces, and refer to Kováčik and Rákosńık [20] for more information.
In order to emphasize that we are dealing with variable exponents, we will
always write p(·) instead of p to denote an exponent function. Given an open
set Ω and function p(·), 1 ≤ p(x) ≤ ∞, x ∈ Ω, define the conjugate function
p′(·) to satisfy 1/p(x)+1/p′(x) = 1, where we take 1/∞ = 0. Given a set E,
let |E| denote its Lebesgue measure, and let p−(E) = ess inf{p(y) : y ∈ E}
and p+(E) = ess sup{p(y) : y ∈ E}. For brevity, let p− = p−(Ω) and
p+ = p+(Ω). Given a function f , let

|f |p(·),Ω =

∫
Ω

|f(y)|p(y) dy.

Finally, C and c will denote positive constants which will depend only on
the dimension n, the underlying set Ω and the exponent function p(·), but
whose value may change at each appearance.

2. Preliminary Results

In this section we gather together a number of lemmas which we need in the
next section. First, we note that while the definition of the norm in variable
Lp spaces given at the beginning of the Introduction is suitable for the
statement of our results, we need a somewhat more general definition in
our proofs.

Definition 2.1. Given an open set Ω ⊂ R
n, and a measurable function

p(·) : Ω → [1,∞], we say f ∈ Lp(·)(Ω) if for some λ > 0,

ρ(p(·), Ω, f/λ) =

∫
Ω\Ω∞

|f(x)/λ|p(x) dx + ‖f/λ‖∞,Ω∞ < ∞,

where Ω∞ = {x ∈ Ω : p(x) = ∞}. The norm on Lp(·)(Ω) is given by

‖f‖p(·), Ω = inf {λ > 0 : ρ(p(·), Ω, f/λ) ≤ 1} .
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Next, we give three basic results about variable Lp spaces. Note in
particular that the second one depends on Definition 2.1. Their proofs can
be found in Kováčik and Rákosńık [20].

Lemma 2.2. Given p(·) : Ω → [1,∞) such that p+ < ∞, then ‖f‖p(·), Ω < C1

if and only if |f |p(·),Ω < C2. In particular, if either constant equals 1 we can
take the other equal to 1 as well.

Lemma 2.3. Given an open set Ω and p(·) : Ω → [1,∞], we have that for
all functions f and g,∫

Ω

|f(x)g(x)| dx ≤ C‖f‖p(·), Ω‖g‖p′(·), Ω.

Lemma 2.4. Given a set Ω with finite measure, and exponent functions
p(·), q(·) : Ω → [1,∞] such that p(x) ≤ q(x),

‖f‖p(·), Ω ≤ C(1 + |Ω|)‖f‖q(·), Ω.

The next lemma is due to Diening [5]; a proof is also found in [3]. It is
through this lemma that we see the connection between (1.2) and maximal
operators.

Lemma 2.5. Given an open set Ω and a function p(·) : Ω → [1,∞) which
satisfies (1.2), then for any ball B such that |B ∩ Ω| > 0,

|B|p−(B∩Ω)−p+(B∩Ω) ≤ C.

The next lemma is a variant of a lemma due to Diening [6]. For the
convenience of the reader we include its short proof.

Lemma 2.6. Given an open set Ω and a function p(·) : Ω→ [1,∞), p+ <∞,
which satisfies (1.2), then for any ball B such that |B ∩Ω| > 0 and |B| ≤ 1,

(2.1) ‖χB∩Ω‖p(·), Ω ≤ C|B|1/p(x).

Proof. Since p+ < ∞, by the definition of the norm on Lp(·)(Ω), and since
|B| ≤ 1,

‖χB∩Ω‖p(·), Ω = inf
{

λ>0 :

∫
B∩Ω

λ−p(x)dx≤1
}

= inf
{

0<λ<1 :

∫
B∩Ω

λ−p(x) dx ≤ 1
}

≤ inf
{

0 < λ < 1 :

∫
B

λ−p+(B∩Ω) dx ≤ 1
}

= |B|1/p+(B∩Ω).

By Lemma 2.5,

|B|1/p+(B∩Ω) = |B|1/p(x)|B|1/p+(B∩Ω)−1/p(x)

≤ |B|1/p(x)|B|p−((B∩Ω)−p+(B∩Ω))/p2
− ≤ C|B|1/p(x).

�
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The next two lemmas allow one exponent function to be substituted for
another; it is here that (1.3) plays a central role. The first is a variation of
a result in [3] that was given in [4]; for completeness we include its short
proof. Here and below, for t > 0 let Rt(x) = (e + |x|)−tn.

Lemma 2.7. Given a set G and two non-negative functions r(·) and s(·),
suppose that for each y ∈ G,

0 ≤ s(y) − r(y) ≤ C

log(e + |z(y)|) ,

where z : G → R
n. Then there exists a constant Ct such that for every

function f ,∫
G

|f(y)|r(y) dy ≤ Ct

∫
G

|f(y)|s(y) dy +

∫
G

Rt(z(y))r−(G) dy.

Proof. Let GRt = {y ∈ G : |f(y)| ≥ Rt(z(y))}. Then∫
G

|f(y)|r(y) dy =

∫
GRt

|f(y)|r(y) dy +

∫
G\GRt

|f(y)|r(y) dy,

and we estimate each integral separately. First, since Rt(z(y)) ≤ 1,∫
G\GRt

|f(y)|r(y) dy ≤
∫

G\GRt

Rt(z(y))r(y) dy ≤
∫

G

Rt(z(y))r−(G) dy.

On the other hand, if y ∈ GRt , then

|f(y)|r(y) = |f(y)|s(y)|f(y)|r(y)−s(y)

≤ |f(y)|s(y)Rt(z(y))−C/ log(e+|z(y)|) ≤ Ct|f(y)|s(y).

The desired inequality now follows immediately. �
The second lemma is a variation of Lemma 2.7; its proof is the same,

mutatis mutandis.

Lemma 2.8. Given a set G and two non-negative functions r(·) and s(·),
suppose that for each y ∈ G,

|s(y) − r(y)| ≤ C

log(e + |y|) ,

Then there exists a constant Ct such that for every function f such that
|f(y)| ≤ 1, y ∈ G,∫

G

|f(y)|r(y) dy ≤ Ct

∫
G

|f(y)|s(y) dy +

∫
G

Rt(y)r−(G) dy.
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3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. At the heart of our argument are the
following two propositions; they generalize inequality (1.5) and the main
lemmas in [3] and [5]. Their proofs are somewhat technical, so we defer
them until after the proof of our main result.

Proposition 3.1. Given an open set Ω ⊂ R
n, and α, 0 < α < n, let

p(·) : Ω → [1,∞) be such that 1 ≤ p− ≤ p+ < n/α and such that (1.2) holds.
Let q(·) be given by (1.4). Then for all f ∈ Lp(·)(Ω) such that ‖f‖p(·),Ω ≤ 1
and such that |f(x)| ≥ 1 or f(x) = 0, x ∈ Ω,

(3.1) Mαf(x) ≤ CMf(x)p(x)/q(x).

To state the next proposition, we need a definition. Given any exponent
function r(·) : Ω → [1,∞), define

Ir(x) = sup
|y|≥|x|

r(y).

Proposition 3.2. Given an open set Ω ⊂ R
n, and α, 0 < α < n, let

p(·) : Ω → [1,∞) be such that 1 ≤ p− ≤ p+ < n/α and such that (1.3) holds.
Let q(·) be given by (1.4). Then for all f ∈ Lp(·)(Ω) such that ‖f‖p(·),Ω ≤ 1
and such that |f(x)| ≤ 1, x ∈ Ω,

(3.2) Mαf(x) ≤ CMf(x)p(x)/Iq(x).

Proof of Theorem 1.3. Fix f ∈ Lp(·)(Ω); without loss of generality we
may assume that f is non-negative and that ‖f‖p(·), Ω ≤ 1. By Lemma 2.2
it will suffice to show that |Mαf |q(·), Ω ≤ C. Further, since the hypotheses of
Theorem 1.1 are satisfied, ‖Mf‖p(·), Ω ≤ C‖f‖p(·), Ω ≤ C. Therefore, again
by Lemma 2.2 we have that |Mf |p(·), Ω ≤ C.

Define f1 = fχ{x:f(x)≥1} and f2 = f −f1. Then ‖fi‖p(·), Ω ≤ ‖f‖p(·), Ω = 1,
i = 1, 2. Therefore, since q+ < ∞, and by Propositions 3.1 and 3.2,∫

Ω

Mαf(x)q(x) dx ≤ 2q+

∫
Ω

Mαf1(x)q(x) dx + 2q+

∫
Ω

Mαf2(x)q(x) dx

≤ C

∫
Ω

Mf1(x)p(x) dx + C

∫
Ω

Mf2(x)p(x)q(x)/Iq(x) dx.

We estimate each integral in turn. The first is immediate:

C

∫
Ω

Mf1(x)p(x) dx ≤ C

∫
Ω

Mf(x)p(x) dx ≤ C.
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To estimate the second, we first need to control the quantity q(x)/Iq(x).
Fix ε > 0. Then there exists y, |y| ≥ |x| such that Iq(x) ≤ (1+ ε)q(y). Then
by (1.3),

0 ≤ Iq(x)−q(x) ≤ (1+ε)q(y)−q(x) ≤ |q(y)−q(x)|+εq+ ≤ C

log(e + |x|)+εq+.

Since ε > 0 is arbitrary and Iq(x) ≥ 1, it follows that

0 ≤ 1 − q(x)/Iq(x) ≤ C

log(e + |x|) .

Let r(x) = q(x)/Iq(x). Then r− ≥ q−/q+, so R2q+/q−(·)r− is integrable.
Therefore, by Lemma 2.7 (with s(x) = 1),∫

Ω

Mf2(x)p(x)q(x)/Iq(x) dx ≤ Ct

∫
Ω

Mf(x)p(x) dx +

∫
Ω

R2q+/q−(x)r− dx ≤ C.

This completes the proof. �

Proof of Proposition 3.1. Fix x ∈ Ω, and fix a ball B containing x.
Then by the definition of q(·),

1

|B|1−α/n

∫
B∩Ω

|f(y)| dy

= |B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αp(x)/n(
1

|B|
∫

B∩Ω

|f(y)| dy

)1−αp(x)/n

≤ |B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αp(x)/n

Mf(x)p(x)/q(x).

To complete the proof we will show that

|B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αp(x)/n

≤ C‖f‖1−p(x)/q(x)
p(·), Ω ≤ C.

There are two cases depending on the size of B. Suppose first that |B| ≥ 1.
Let Ωf = supp(f). By Chebyschev’s inequality and Lemma 2.2,

|Ωf | ≤ |f |p(x),Ω ≤ ‖f‖p(x),Ω ≤ 1.

Therefore, since p(x) ≥ 1, by Lemma 2.4,

|B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αp(x)/n

≤
(∫

B∩Ω

|f(y)| dy

)αp(x)/n

≤ ‖f‖αp(x)/n
1, Ωf

≤ (
C(1 + |Ωf |)‖f‖p(·),Ωf

)αp(x)/n

≤ C.
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Now suppose |B| ≤ 1. If p−(B ∩ Ω) > 1, then (p′)+(B ∩ Ω) < ∞ and
p′(·) satisfies (1.2), so by Lemmas 2.3 and 2.6,

|B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αp(x)/n

≤ |B|α/n−αp(x)/n‖χB∩Ω‖αp(x)/n
p′(·), Ω ‖f‖αp(x)/n

p(·), Ω

≤ |B|α/n−αp(x)/n‖χB∩Ω‖αp(x)/n
p′(·), Ω

≤ C|B|α/n−αp(x)/n|B| αp(x)

np′(x)

≤ C.

The argument is the same when p−(B ∩ Ω) = 1 except that instead of
applying Lemma 2.6 we note that by Lemma 2.4,

‖χB∩Ω‖αp(x)/n
p′(·), Ω = ‖χB∩Ω‖αp(x)/n

p′(·),B∩Ω ≤ C(1 + |B|)‖χB∩Ω‖αp(x)/n
∞,B∩Ω ≤ C.

Then by Lemma 2.5,

|B|α/n−αp(x)/n ≤ |B|(p−(B∩Ω)−p+(B∩Ω))α/n ≤ C.

This completes the proof. �

The above argument readily adapts to prove that (1.5) holds in variable
Lp spaces if we assume that Ω is bounded. Details of the proof are left to
the reader.

Proposition 3.3. Given a bounded, open set Ω ⊂ R
n, and α, 0 < α < n,

let p(·) : Ω → [1,∞) be such that 1 < p− ≤ p+ < n/α and such that (1.2)
holds. Let q(·) be given by (1.4). Then for all f ∈ Lp(·)(Ω),

(3.3) Mαf(x) ≤ C(Ω, n, p(·))‖f‖1−p(x)/q(x)
p(·),Ω Mf(x)p(x)/q(x), x ∈ Ω.

When Ω is unbounded (3.3) need not hold, even if p(·) satisfies (1.2)
and (1.3).

Example 3.4. There exists an exponent function p(·) : [1,∞) → R such
that (1.2) and (1.3) hold but such that (3.3) does not hold uniformly for all
f ∈ Lp(·)(R).

Proof. Let Ω = R, α = 1/4, and let p(·) be any smooth exponent function
such that p(0) = 2 and p(x) = 3 if |x| ≥ 1. Define the sequence of functions
{fn}∞1 by fn(x) = n−1χ[n,2n]. We will show that inequality (3.3) does not
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hold with a uniform constant for this family. Defining q(·) as above, we have
that q(0) = 4. Straightforward computations show that

‖fn‖p(·),R = n−2/3,

Mfn(0) =
1

2n

∫ 2n

0

|fn(y)| dy = (2n)−1,

Mαfn(0) ≥ 1

(2n)3/4

∫ 2n

0

|fn(y)| dy = (2n)−3/4.

Therefore, if (3.3) held, then when x = 0 we would have that for all n,

(2n)−3/4 ≤ Cn−(2/3)(1−2/4)(2n)−2/4 = Cn−5/6,

which is clearly impossible. �
Proof of Proposition 3.2. Fix x ∈ Ω and let B be any ball containing x.
It will suffice to show that

1

|B|1−α/n

∫
B∩Ω

|f(y)| dy ≤ CMf(x)p(x)/Iq(x),

where C is independent of B.
It follows at once from the definition of q(·) that 1/Ip(x)−1/Iq(x) = α/n.

Therefore, by Hölder’s inequality,

1

|B|1−α/n

∫
B∩Ω

|f(y)| dy

= |B|α/n

(
1

|B|
∫

B∩Ω

|f(y)| dy

)αIp(x)/n (
1

|B|
∫

B∩Ω

|f(y)| dy

)1−αIp(x)/n

≤
(∫

B∩Ω

|f(y)|Ip(x) dy

)α/n

Mf(x)Ip(x)/Iq(x).

Since |f(x)| ≤ 1, Mf(x) ≤ 1, so Mf(x)Ip(x)/Iq(x) ≤ Mf(x)p(x)/Iq(x).
Therefore, to complete the proof we only need to show that the last integral
is bounded by a constant. Define the sets

Bx = {y ∈ B ∩ Ω, |y| ≤ |x|},
Bx = {y ∈ B ∩ Ω, |y| > |x|}.

Then ∫
B∩Ω

|f(y)|Ip(x) dy =

∫
Bx

|f(y)|Ip(x) dy +

∫
Bx

|f(y)|Ip(x) dy.
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The second integral is easy to estimate. If y ∈ Bx then Ip(x) ≥ p(y);
thus, since |f(y)| ≤ 1, by Lemma 2.2,∫

Bx

|f(y)|Ip(x) dy ≤
∫

Bx

|f(y)|p(y) dy ≤ |f |p(·),Ω ≤ 1.

To estimate the first integral we will apply Lemma 2.8. If y ∈ Bx, then
by (1.3),

|p(y) − Ip(x)| ≤ C

log(e + |y|).

Therefore, for any t > 1,∫
Bx

|f(y)|Ip(x) dy ≤ Ct

∫
Bx

|f(y)|p(y) dy +

∫
Bx

Rt(y)(Ip)− dy ≤ C.

This completes the proof. �

4. An Inequality for the Maximal Operator

In this section we prove the following inequality for averages over balls.

Theorem 4.1. Given an open set Ω ⊂ R
n, let p(·) : Ω → [1,∞) satisfy (1.2)

and (1.3). Suppose f ∈ Lp(·)(Ω) is such that |f |p(·), Ω ≤ 1. Then for every
ball B and every x ∈ B,

(4.1)

(
1

|B|
∫

B∩Ω

|f(y)| dy

)p(x)

≤ C

(
1

|B|
∫

B∩Ω

|f(y)|p(y)/p− dy

)p−

+ S(x),

where S(·) ∈ L1(Rn) and C = C(n, p(·)).
Before proving Theorem 4.1 we first want to make some observations.

As an immediate consequence of it, we have the following pointwise inequal-
ity for the maximal operator:

(4.2) Mf(x)p(x) ≤ CM(|f(·)|p(·)/p−)(x)p− + S(x).

Inequality (4.2) is a significantly simplified version of the two key lemmas
in [3]; given it, the proof of Theorem 1.1 is straightforward. Fix f ∈ Lp(·)(Ω);
without loss of generality we may assume that ||f ||p(·),Ω ≤ 1. By Lemma 2.2
it will suffice to show that |Mf |p(·), Ω ≤ C. Since ||f ||p(·),Ω ≤ 1, again by
Lemma 2.2 we have that |f |p(·), Ω ≤ 1. If we integrate (4.2) over Ω, we get∫

Ω

Mf(x)p(x) dx ≤ C

∫
Ω

M(|f(·)|p(·)/p−)(x)p− dx +

∫
Ω

S(x) dx.
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Since S ∈ L1(Ω), the second integral is bounded by a constant; since
p− > 1, the maximal operator is bounded on Lp−(Ω) (see, for example,
Stein [29, p. 5]). Thus,

∫
Ω

Mf(x)p(x) dx ≤ C

(∫
Ω

|f(x)|p(x) dx

)
+

∫
Ω

S(x) dx ≤ C.

This completes the proof.

Our original goal in writing this paper was to provide a proof of Theo-
rem 1.3 which included the case α = 0; in other words, we wanted to give a
unified proof of Theorems 1.1 and 1.3, rather than use the former to prove
the latter. In light of (4.2) we made the following conjecture.

Conjecture 4.2. Let Ω, α, p(·), q(·) be as in Theorem 1.3. If f is such
that |f |p(·), Ω ≤ 1, then for all x ∈ Ω,

Mαf(x)q(x) ≤ CMα(|f(·)|p(·)/p−)(x)q− + S(x),

where S(·) ∈ L1(Rn) and C = C(n, p(·)).

We are unable to prove this: the proof of Theorem 4.1 below only holds
in the case α = 0. Nevertheless, we still believe that this conjecture or some
minor variant of it is true.

Proof of Theorem 4.1. The first part of this proof has some parts in
common with the proof of [3, Lemma 2.3]; however, there are significant
differences, so for the convenience of the reader we have included all the
details.

First note that without loss of generality we may assume that f is non-
negative. If we define f1 = fχ{x:f(x)≤1} and f2 = f − f1, then fi(x) ≤ f(x),
i = 1, 2, and

Mf(x)p(x) ≤ 2p+
(
Mf1(x)p(x) + Mf2(x)p(x)

)
.

Therefore, it will suffice to prove that Theorem 4.1 holds in two special cases:
when f(x) ≥ 1 or f(x) = 0, and when f(x) ≤ 1. We will treat each case in
turn. Throughout this section, let

R(x) = R1(x) =
1

(e + |x|)n
.

Also define p(x) = p(x)/p−. Then p(x) ≥ 1, and (1.3) holds with p replaced
by p.
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Proof of Theorem 4.1 when f(x) ≥ 1 or f(x) = 0.

Fix x ∈ Ω, and fix a ball B of radius r > 0 containing x such that |B∩Ω| > 0.
Let BΩ = B ∩ Ω. We will consider three cases.

Case 1: r < |x|/4. By our assumption on r, if y1, y2 ∈ B, then log(e +
|y1|) ≈ log(e + |y2|). Hence, for all y ∈ BΩ,

(4.3) 0 ≤ p(y) − p−(BΩ) ≤ C

log(e + |y|).

Therefore, by Hölder’s inequality and by Lemma 2.7, with r(·) replaced
by the constant p−(BΩ), s(·) by p(·), and with z(y) = y, t = 1, we have that(

1

|B|
∫

BΩ

f(y) dy

)p(x)

≤
(

1

|B|
∫

BΩ

f(y)p−(BΩ) dy

)p(x)/p−(BΩ)

≤
(

C

|B|
∫

BΩ

f(y)p(y) dy +
1

|B|
∫

BΩ

R(y)p−(BΩ) dy

)p(x)/p−(BΩ)

.

Since r < |x|/4, if y ∈ B, R(y) ≤ CR(x). Hence,

≤
(

C

|B|
∫

BΩ

f(y)p(y) dy + CR(x)p−(BΩ)

)p(x)/p−(BΩ)

.

Since p(x)/p−(BΩ) ≤ p+ < ∞,

≤ 2p+C

(
1

|B|
∫

BΩ

f(y)p(y) dy

)p(x)/p−(BΩ)

+ 2p+CR(x)p(x).

Since p− > 1, R(x)p(x) ∈ L1(Rn). Hence, to complete Case 1 we will
show that the first term is dominated by a constant multiple of(

1

|B|
∫

BΩ

f(y)p(y) dy

)p−

.

We argue as follows:(
1

|B|
∫

BΩ

f(y)p(y) dy

)p(x)/p−(BΩ)

=

(
1

|B|
∫

BΩ

f(y)p(y) dy

)p− ( 1

|B|
∫

BΩ

f(y)p(y) dy

)(p(x)/p−(BΩ))−p−

= |B|−[(p(x)/p−(BΩ))−p−]/p−

×
(∫

BΩ

f(y)p(y) dy

)[(p(x)/p−(BΩ))−p−]/p− ( 1

|B|
∫

BΩ

f(y)p(y) dy

)p−

.
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Observe that

− 1

p−

[
p(x)

p−(BΩ)
− p−

]
= p(x)

[
1

p(x)
− 1

p−(BΩ)

]
≤ 0.

Thus, if |B| ≥ 1,
|B|−[(p(x)/p−(BΩ))−p−]/p− ≤ 1.

Otherwise, if |B| ≤ 1, we have that

p(x)

[
1

p(x)
− 1

p−(BΩ)

]
≥ p+

p2−

(
p−(BΩ) − p+(BΩ)

)
,

so by Lemma 2.5,

|B|−[(p(x)/p−(BΩ))−p−]/p− ≤ |B|(p+/p2
−)(p−(BΩ)−p+(BΩ)) ≤ C.

Similarly,
p(x)

p−(BΩ)
− p− =

p(x)

p−(BΩ)
p− − p− ≥ 0,

so, since |f |p(·),Ω ≤ 1,

(∫
BΩ

f(y)p(y) dy

)[(p(x)/p−(BΩ))−p−]/p−

≤ 1.

Combining these three estimates we get inequality (4.1).

Case 2: |x| ≤ 1 and r ≥ |x|/4. As in Case 1, we apply Lemma 2.7.
For all y ∈ BΩ, since |x| ≤ 1,

0 ≤ p(y) − p−(BΩ) ≤ p+ − p− ≤ C

log(e + |x|) .

Therefore, by Hölder’s inequality and by Lemma 2.7, with r(·) replaced by
the constant p−(BΩ), s(·) by p(·), and with z(y) = x, t = 1, we have that

(
1

|B|
∫

BΩ

f(y) dy

)p(x)

≤
(

1

|B|
∫

BΩ

f(y)p−(BΩ) dy

)p(x)/p−(BΩ)

≤
(

C

|B|
∫

BΩ

f(y)p(y) dy +
1

|B|
∫

BΩ

R(x)p−(BΩ) dy

)p(x)/p−(BΩ)

.

Since p(x)/p−(BΩ) ≤ p+ < ∞,

≤ 2p+

(
C

|B|
∫

BΩ

f(y)p(y) dy

)p(x)/p−(BΩ)

+ 2p+CR(x)p(x).
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We now argue exactly as in Case 1 to show that the integral on the last line
is dominated by a constant multiple of(

1

|B|
∫

BΩ

f(y)p(y) dy

)p−

.

Case 3: |x| ≥ 1 and r ≥ |x|/4. Since f(x) ≥ 1 or f(x) = 0, p− ≥ 1 and
|f |p(·), Ω ≤ 1,(

1

|B|
∫

BΩ

f(y) dy

)p(x)

≤ |B|−p(x)

(∫
BΩ

f(y)p(y) dy

)p(x)

≤ |B|−p(x) ≤ C|x|−np(x) ≤ CR(x)p(x).

This completes the proof of inequality (4.1) when f(x) ≥ 1 or f(x) = 0.

Proof of Theorem 4.1 when f(x) ≤ 1.

In the previous argument we only used the fact that f(x) ≥ 1 in Case 3.
Therefore, here it will suffice to fix x ∈ Ω, |x| ≥ 1, and a ball B containing x
with radius r ≥ |x|/4, and prove that(

1

|B|
∫

BΩ

f(y) dy

)p(x)

≤ C

(
1

|B|
∫

BΩ

f(y)p(y) dy

)p−

+ S(x),

where S(·) is some function in L1.
Since p(x) ≤ p+ < ∞,(
1

|B|
∫

BΩ

f(y) dy

)p(x)

≤ 2p+

(
1

|B|
∫

BΩ∩B|x|(0)
f(y) dy

)p(x)

+ 2p+

(
1

|B|
∫

BΩ\B|x|(0)
f(y) dy

)p(x)

.

= I1 + I2.

We will estimate each term separately. To estimate I2, we will give an
argument very similar to that in Case 2 above. Let E = BΩ \B|x|(0). Then,
if w, z ∈ E, by condition (1.3),

|p(w) − p(z)| ≤ C

log(e + |x|);

as a consequence, for all y ∈ E,

0 ≤ p(y) − p−(E) ≤ p+(E) − p−(E) ≤ C

log(e + |x|) .
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Therefore, by Hölder’s inequality and by Lemma 2.7, with r(·) replaced by
p−(E), and s(·) by p(·), and with z(y) = x, t = 1, we have that

(
1

|B|
∫

E

f(y) dy

)p(x)

≤
(

1

|B|
∫

E

f(y)p−(E) dy

)p(x)/p−(E)

≤
(

C

|B|
∫

E

f(y)p(y) dy +
1

|B|
∫

E

R(x)p−(E) dy

)p(x)/p−(E)

.

Since p(x)/p−(E) ≤ p+ < ∞ and E ⊂ BΩ,

≤ 2p+

(
C

|B|
∫

BΩ

f(y)p(y) dy

)p(x)/p−(E)

+ 2p+R(x)p(x).

We estimate the first term exactly as we did for the corresponding in-
tegral in Case 1 in the above argument, using the fact that p(x) ≥ p−(E).
Therefore, we have shown that

I2 =

(
1

|B|
∫

BΩ\B|x|(0)
f(y) dy

)p(x)

≤ C

(
1

|B|
∫

BΩ

f(y)p(y) dy

)p−

+CR(x)p(x).

We now estimate I1. Let F = B|x|(0) ∩ BΩ. Then for all y ∈ F , by
inequality (1.3),

|p(x) − p(y)| ≤ C

log(e + |y|).

Therefore, by Hölder’s inequality and Lemma 2.8 with r(·) = p(x), s(·) =
p(·), t = 1,

(
1

|B|
∫

F

f(y) dy

)p(x)

≤
(

1

|B|
∫

F

f(y)p(x) dy

)p(x)/p(x)

≤
(

C
1

|B|
∫

F

f(y)p(y) dy +
1

|B|
∫

B|x|(0)
R(y)p(x) dy

)p−

≤ C

(
1

|B|
∫

F

f(y)p(y) dy

)p−

+ C

(
1

|B|
∫

B|x|(0)
R(y)p(x) dy

)p−

;

since r > |x|/4, |B|x|(0)| ≤ C|B|; hence,

≤ C

(
1

|B|
∫

BΩ

f(y)p(y) dy

)p−

+ C

(
|B|x|(0)|−1

∫
B|x|(0)

R(y)p(x) dy

)p−
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To complete the proof we will show that the second term is dominated
by an L1 function. Fix r, 1 < r < p−. Then by Hölder’s inequality,(
|B|x|(0)|−1

∫
B|x|(0)

R(y)p(x) dy

)p−

≤ |B|x|(0)|−p−/r

(∫
B|x|(0)

R(y)p(x)r dy

)p−/r

Since p(x)r ≥ p−r > 1 and R(y) ≤ 1,∫
B|x|(0)

R(y)p(x)r dy ≤
∫

B|x|(0)
R(y)p−r dy ≤ C.

Furthermore, since |x| ≥ 1,

|B|x|(0)|−p−/r ≤ C(e + |x|)−np−/r = CRp−/r(x),

and the last function is in L1 since p− > r. �

5. Proof of Theorem 1.6

In this section we prove Theorem 1.6. We will first prove it in the special
case α = 0, and then prove the general case.

Fix f ∈Lp(·)(Ω); without loss of generality we may assume that ‖f‖p(·),Ω =1.
Then by Lemma 2.2, |f |p(·),Ω ≤ 1. Fix t > 0. Then again by Lemma 2.2 it
will suffice to prove that∫

Ω

(
tχ{Mf>t}(x)

)p(x)
dx =

∫
{Mf(x)>t}

tp(x) dx ≤ C.

For each N > 0 define fN = fχBN (0). Then for each N the set {MfN (x) > t}
is bounded, and by the monotone convergence theorem,∫

{Mf(x)>t}
tp(x) dx = lim

N→∞

∫
{MfN (x)>t}

tp(x) dx.

Therefore, it will suffice to prove that∫
{MfN (x)>t}

tp(x) dx ≤ C

where C is independent of N .

Fix N > 0. For each x ∈ {MfN (x) > t} there exists a ball Bx contain-
ing x such that

2n

|2Bx|
∫

2Bx∩Ω

|f(y)| dy ≥ 1

|Bx|
∫

Bx∩Ω

|fN(y)| dy > t.
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Therefore, by the Besicovitch covering lemma (see de Guzmán [15]), there
exists a countable subset {Bk} of {Bx} such that

{MfN(x) > t} ⊂
⋃
k

2Bk

and such that the balls {2Bk} have finite overlap uniformly bounded by a
constant depending only on the dimension. Hence,∫

{MfN (x)>t}
tp(x) dx ≤

∑
k

∫
2Bk∩Ω

tp(x) dx

≤ 2np+

∑
k

∫
2Bk∩Ω

(
1

|2Bk|
∫

2Bk∩Ω

|f(y)| dy

)p(x)

dx;

by Theorem 4.1, since p− = 1,

≤ C
∑

k

∫
2Bk∩Ω

[
1

|2Bk|
∫

2Bk∩Ω

|f(y)|p(y) dy + S(x)

]
dx

≤ C
∑

k

∫
2Bk∩Ω

|f(y)|p(y) dy +

∫
2Bk∩Ω

S(x) dx.

Since the balls have uniformly bounded finite overlap,

≤ C

∫
Ω

|f(y)|p(y) dy +

∫
Ω

S(x) dx

≤ C.

This completes the proof when α = 0.
Now fix α, 0 < α < n, and fix f ∈ Lp(·)(Ω); without loss of generality

we may assume that ‖f‖p(·),Ω = 1. Define f = f1 + f2, where f1 = fχ{|f |≥1}
and f2 = fχ{|f |<1}. Then Mαf(x) ≤ Mαf1(x) + Mαf2(x), so

χ{Mαf(x)>t} ≤ χ{Mαf1(x)>t/2} + χ{Mαf2(x)>t/2}.

Therefore, by Propositions 3.1 and 3.2,

t‖χ{Mαf>t}‖q(·), Ω ≤ t‖χ{Mαf1>t/2}‖q(·), Ω + t‖χ{Mαf2>t/2}‖q(·), Ω
≤ t‖χ{Mf1(x)p(x)/q(x)>t/2C}‖q(·), Ω + t‖χ{Mf2(x)p(x)/Iq(x)>t/2C}‖q(·), Ω.

We can estimate each of the last two terms using an argument essentially
the same as in the case when α = 0. We consider the first. As above, it will
suffice to show that ∫

{MfN (x)p(x)/q(x)>t/2C}
tq(x) dx ≤ C

where C is independent of N .
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But for each x ∈ {MfN (x)p(x)/q(x) > t/2C} there exists a ball Bx con-
taining x such that(

2n

|2Bx|
∫

2Bx∩Ω

|f(y)| dy

)p(x)/q(x)

≥
(

1

|Bx|
∫

Bx∩Ω

|fN(y)| dy

)p(x)/q(x)

> t/2C.

Since q+ < ∞ the proof now proceeds exactly as it did above.
To estimate the second term we need to show that∫

{MfN (x)p(x)/Iq(x)>t/2C}
tq(x) dx ≤ C

where C is independent of N . However, arguing exactly as we did at the
end of the proof of Theorem 1.3 we have (with the same notation as used
there) that∫

{MfN (x)p(x)/Iq(x)>t/2C}
tq(x) dx ≤ C

∫
{MfN (x)p(x)/Iq(x)>t/2C}

tIq(x) dx

+ C

∫
Ω

R2q+/q−(x)r− dx.

The proof now proceeds as it does for the first term.

This completes the proof of Theorem 1.6.

6. Proof of Theorems 1.8 and 1.9

The proofs of Theorems 1.8 and 1.9 depend on an inequality due to
Welland [30].

Lemma 6.1. Given α, 0 < α < n, fix ε, 0 < ε < max(α, n − α). Then
there exists a constant C = C(α, n, ε) such that for all f ∈ L1

loc(R
n) and

all x ∈ R
n,

(6.1) |Iαf(x)| ≤ C[Mα−εf(x)]1/2[Mα+εf(x)]1/2.

Remark 6.2. In [30], Lemma 6.1 is not enunciated as a separate result,
but is part of a longer proof. In the proof it is assumed that ε > 0 is small,
but this is a technical hypothesis related to the larger theorem, and is not
used to prove inequality (6.1). However, below we will assume that ε is
close to 0.

Proof of Theorem 1.8. Fix f ∈ Lp(·)(Ω); without loss of generality we
may assume that ‖f‖p(·), Ω = 1. Since q+ < ∞, by Lemma 2.2 it will suffice
to prove that |Iαf |q(·), Ω ≤ C.
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Fix ε, 0 < ε < max(α, n − α), such that

(6.2)
2

εq+

n
+ 1

> 1,

and define r(·) : Ω → [1,∞) by

r(x) =
2

εq(x)
n

+ 1
.

Then by (6.2) we have r− >1. Moreover, by elementary algebra, for all x∈Ω,

1

p(x)
− 1

r(x)q(x)
2

=
α − ε

n
(6.3)

1

p(x)
− 1

r′(x)q(x)
2

=
α + ε

n
.(6.4)

If we raise both sides of (6.1) to the power q(x) and integrate over Ω we get∫
Ω

|Iαf(x)|q(x) dx ≤ C

∫
Ω

[Mα−εf(x)]q(x)/2[Mα+εf(x)]q(x)/2 dx.

If we apply Hölder’s inequality for variable Lp spaces with exponents r(·)
and r′(·) (Lemma 2.3), then∫

Ω

|Iαf(x)|q(x) dx ≤ C‖[Mα−εf(·)]q(·)/2‖r(·), Ω × ‖[Mα+εf(·)]q(·)/2‖r′(·), Ω

To complete the proof we will estimate each factor on the righthand side.
Without loss of generality we may assume that each is greater than 1, since
otherwise there is nothing to prove. In this case, in the definition of each
norm we may assume that the infimum is taken over values of λ greater
than 1. But then, since for all x∈Ω and λ>1, λ2/q(x)≥λ2/q+ , we have that∫

Ω

(
[Mα−εf(x)]q(x)/2

λ

)r(x)

dx =

∫
Ω

(
Mα−εf(x)

λ2/q(x)

)r(x)q(x)/2

dx

≤
∫

Ω

(
Mα−εf(x)

λ2/q+

)r(x)q(x)/2

dx.

Therefore, by (6.3) and Theorem 1.3,

‖[Mα−εf ]q(·)/2‖r(·), Ω ≤ ‖Mα−εf‖q+/2
r(·)q(·)/2, Ω ≤ C‖f‖q+/2

p(·), Ω ≤ C.

The norm ‖[Mα+εf(·)]q(·)/2‖r(·)′, Ω can be estimated in the same way, re-
placing in the argument above α − ε by α + ε, r(·) by r′(·), and using (6.4)
instead of (6.3). This completes the proof. �
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Proof of Theorem 1.9. Fix f ∈ Lp(·)(Ω); without loss of generality we
may assume that ‖f‖p(·), Ω = 1. Since q+ < ∞, by Lemma 2.2 it will suffice
to prove that ∫

{|Iαf |>t}
tq(x) dx ≤ C.

Fix ε, r(·) and r′(·) as in the proof of Theorem 1.8. Since r− > 1, (r′)+ < ∞.
By Lemma 6.1 and Young’s inequality, for each x,

|Iαf(x)| ≤ CMα−εf(x)1/2Mα+εf(x)1/2

≤ [CMα−εf(x)]r(x)/2

r(x)
+

[CMα+εf(x)]r
′(x)/2

r′(x)

≤ Cr+Mα−εf(x)r(x)/2 + C(r′)+Mα+εf(x)r′(x)/2.

Therefore,∫
{|Iαf |>t}

tq(x) dx ≤
∫
{Mα−εf(x)r(x)/2>t/2C}

tq(x) dx +

∫
{Mα+εf(x)r′(x)/2>t/2C}

tq(x) dx.

We estimate each of these integrals as we did in the second half of the
proof of Theorem 1.6, using first the exponent pair p(·), r(·)q(·)/2 or the
exponent pair p(·), r′(·)q(·)/2 to apply Theorem 4.1 and then arguing as
before. �

A. The Nekvinda Condition

In the case Ω = R
n, Nekvinda [24] independently proved a more general

version of Theorem 1.1. To compare his result to ours, we first must slightly
restate one of our hypotheses. If the exponent function p(·) satisfies (1.3),
then this is equivalent to the existence of a constant p∞ and a function φ(·)
converging to zero as |x| → ∞ such that p(x) = p∞ + φ(x) and

(A.1) |φ(x) − φ(y)| ≤ C

log(e + |x|) , |y| ≥ |x|.

Nekvinda replaced this condition with the following: there exists β > 0
such that

(A.2)

∫
{x:|φ(x)|>0}

|φ(x)|β1/|φ(x)| dx < ∞.

Clearly, condition (A.1) is easier to verify than (A.2); on the other hand, (A.2)
is better than (A.1): from (A.1) we have that |φ(x)| ≤ C[log(e + |x|)]−1, so
if we let β = e−k, k > 0, the integral in (A.2) converges if we choose k suf-
ficiently large. (We remark in passing that this extends [24, Example 2.15]
to the case β = 1.)
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But, as the next example shows, the converse is false even for functions
which satisfy (1.2).

Example A.1. There exists a function φ(·) : R → [0, 1] which satisfies (1.2)
and (A.2) but not (A.1).

Proof. We define φ(·) as follows:

φ(x) =

{
1
n
− |en2 − x| 0 ≤ |en2 − x| ≤ 1

n
, 1 ≤ n < ∞,

0 otherwise.

Then we have that

φ(en2

) =
1

n
≈ n

log(e + en2)
, φ(en2

+ 1/n) = 0,

so (A.1) cannot hold. On the other hand, it follows immediately from the
definition that φ is Lipschitz, so (1.2) holds. Furthermore, if we let β = e−1,
then∫

{|en2−x|<1/n}
φ(x)e−1/φ(x) dx = 2

∫ 1/n

0

ye−1/y dy = 2

∫ ∞

n

z−3e−z dz ≤ 1

n2en
.

Hence, ∫
{x:φ(x)>0}

φ(x)e−1/φ(x) dx ≤
∞∑

n=1

1

n2en
< ∞.

�
Given fairly weak additional hypotheses, (A.2) does imply (A.1): for

example, if the least radial majorant of the integrand in (A.2) is dominated
by a power function. This is the substance of the next result.

Proposition A.2. Given a bounded function φ(·), suppose that for some
β > 0 there exists a > 0 such that for all x ∈ {x : |φ(x)| > 0},

(A.3) |φ(x)|β1/|φ(x)| ≤ C

(e + |x|)a
.

Then (A.1) holds.

Proof. If we rearrange (A.3) and take the logarithm of both sides, we get

a log(e + |x|) ≤ 1

|φ(x)|
(
C|φ(x)| − |φ(x)| log |φ(x)| − log β

)
.

Since φ(·) is bounded, and since |t| log |t| is bounded for t close to 0, it follows
that

log(e + |x|) ≤ C

|φ(x)| ,
and (A.1) follows immediately. �
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Finally, we note that our proof of Theorem 1.1 can be generalized to
include additional exponent functions p(·). In the proof given above (or in
the proof in [3]), we can replace the function R(x) = (e + |x|)−n with any
function R such that Rp− ∈ L1, and such that R is roughly constant on
balls whose radii are small compared to their distances from the origin—for
instance, functions which satisfy

R(y) ≈ R(x),
|x|
2

≤ |y| ≤ 2|x|.

Given such an R, we then modify condition (1.3) (or (A.1)), replacing
log(e + |x|)−1 with log(R(x))−1. If we do this, then the proof goes through
with only slight changes. Details are left to the interested reader.

Acknowledgment. The authors would like to thank the anonymous referee,
whose valuable comments considerably simplified the proof of Theorem 1.3.
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[10] Edmunds, D. and Rákosńık, J.: Sobolev embeddings with variable ex-
ponent II. Math. Nachr. 246/247 (2002), 53–67.



Fractional maximal operators and fractional integrals on Lp(·) 769

[11] Fan, X. and Zhao, D.: On the spaces Lp(x)(Ω) and W m,p(x)(Ω). J. Math.
Anal. Appl. 263 (2001), 424–446.

[12] Fusco, N. and Sbordone, C.: Some remarks on the regularity of minima
of anisotropic integrals. Comm. Partial Differential Equations 18 (1993),
153–167.

[13] Giaquinta, M.: Growth conditions and regularity, a counterexample.
Manuscripta Math. 59 (1987), 245–248.

[14] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equa-
tions of second order. Second edition. Grundlehren der Mathematischen
Wissenschaften 224. Springer-Verlag, Berlin, 1983.

[15] Guzmán, M. de: Differentiation of integrals in R
n. Lecture Notes in Math-

ematics 481. Springer-Verlag, New York, 1975.
[16] Hedberg, L.: On certain convolution inequalities. Proc. Amer. Math. Soc.

36 (1972), 505–510.
[17] Hudzik, H.: On generalized Orlicz-Sobolev space. Funct. Approximatio

Comment. Math. 4 (1976), 37–51.
[18] Kokilashvili, V. and Samko, S.: Maximal and fractional operators in

weighted Lp(x) spaces. Rev. Mat. Iberoamericana 20 (2004), no. 2, 493–515.
[19] Kokilashvili, V. and Samko, S.: On Sobolev theorem for Riesz-type

potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendun-
gen 22 (2003), no. 4, 899–910.
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