Open Access
August, 2007 Integration Operators on Bergman Spaces with exponential weight
Milutin R. Dostanić
Rev. Mat. Iberoamericana 23(2): 421-436 (August, 2007).


We study operators of the form $T_{g}f\left( z\right) =\int\nolimits_{0}^{z}f\left( \xi \right) \,g^{\prime }\left( \xi \right) \,d\left( \xi \right) $ ($g$ is an analytic function unity disc) on weighted Bergman spaces $L_{a}^{p}\left( w\right) $ of the unit disc where symbol $g$ is analytic function on the disc. For the case of $$ w(r) =\exp \Big( \frac{-a}{( 1-r)^{\beta }}\Big)\qquad \left( a>0, 0<\beta \leq 1\right) $$ it is shown that operator $T_{g}$ is bounded (compact) on $L_{a}^{2}\left( w\right) $ if and only if $\left( 1-\left\vert z\right\vert \right)^{\beta +1}\left\vert g^{\prime }\left( z\right) \right\vert =O\left( 1\right) \left( =o\left( 1\right) \right) $ as $\left\vert z\right\vert \rightarrow 1-$, thus solving a problem formulated in [Aleman, A. and Siskakis, A.G.: Integration Operators on Bergman Spaces. Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.].


Download Citation

Milutin R. Dostanić. "Integration Operators on Bergman Spaces with exponential weight." Rev. Mat. Iberoamericana 23 (2) 421 - 436, August, 2007.


Published: August, 2007
First available in Project Euclid: 26 September 2007

zbMATH: 1146.47020
MathSciNet: MR2371433

Primary: 47B38

Keywords: radial weight function , tauberian theorem of Ingham , weighted Bergman's space

Rights: Copyright © 2007 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.23 • No. 2 • August, 2007
Back to Top