Abstract
Consider a finite group $G$ acting on a Riemann surface $S$, and the associated branched Galois cover $\pi_G:S \to Y=S/G$. We introduce the concept of \emph{geometric signature} for the action of $G$, and we show that it captures much information: the geometric structure of the lattice of intermediate covers, the isotypical decomposition of the rational representation of the group $G$ acting on the Jacobian variety $JS$ of $S$, and the dimension of the subvarieties of the isogeny decomposition of $JS$. We also give a version of Riemann's existence theorem, adjusted to the present setting.
Citation
Anita M. Rojas . "Group actions on Jacobian varieties." Rev. Mat. Iberoamericana 23 (2) 397 - 420, August, 2007.
Information