Abstract
In this paper, we are concerned with the asymptotically linear elliptic problem $-\Delta u+ \lambda_{0}u=f(u), u\in H_{0}^{1}(\Omega ) $ in an exterior domain $\Omega= \mathbb{R}^{N}\setminus\overline{\mathcal{O}} \left( N\geqslant 3\right) $ with $\mathcal{O}$ a smooth bounded and star-shaped open set, and $\lim_{t\rightarrow +\infty }\frac{ f(t)}{t}=l$, $0<l<+\infty$. Using a precise deformation lemma and algebraic topology argument, we prove under our assumptions that the problem possesses at least one positive solution.
Citation
Gongbao Li . Gao-Feng Zheng . "The existence of positive solution to some asymptotically linear elliptic equations in exterior domains." Rev. Mat. Iberoamericana 22 (2) 559 - 590, September, 2006.
Information