Abstract
For each weight $k$ and level $N$ square free and without small prime factors, we prove the existence of primitive forms $f_+$ and $f_-$ of weight $k$ and level $N$ such that $$ L(1,\sym^2f_+)\gg_{k}[\log\log(3N)]^{3} $$ and $$ L(1,\sym^2f_-)\ll_{k}[\log\log(3N)]^{-1}. $$ The result comes from a delicate study of the moments of $L(1,\sym^2 f)$. This study gives also results for squarefree levels but with small prime factors. It provides counterexamples to the equivalence between harmonic and natural means.
Citation
Emmanuel Royer. Jie Wu. "Taille des valeurs de fonctions $L$ de carrés symétriques au bord de la bande critique." Rev. Mat. Iberoamericana 21 (1) 263 - 312, March, 2005.
Information