Abstract
We study the boundedness of the maximal operator, potential type operators and operators with fixed singularity (of Hardy and Hankel type) in the spaces $L^{p(\cdot)}(\rho,\Omega)$ over a bounded open set in $\mathbb{R}^n$ with a power weight $\rho(x)=|x-x_0|^\gamma$, $x_0\in \overline{\Omega}$, and an exponent $p(x)$ satisfying the Dini-Lipschitz condition.
Citation
Vakhtang Kokilashvili. Stefan Samko. "Maximal and Fractional Operators in Weighted $L^{p(x)}$ Spaces." Rev. Mat. Iberoamericana 20 (2) 493 - 515, June, 2004.
Information