Open Access
September, 2003 Minimal Resolutions of Lattice Ideals and Integer Linear Programming
Emilio Briales, Antonio Campillo, Pilar Pisón, Alberto Vigneron
Rev. Mat. Iberoamericana 19(2): 287-306 (September, 2003).


A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Algebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.


Download Citation

Emilio Briales. Antonio Campillo. Pilar Pisón. Alberto Vigneron. "Minimal Resolutions of Lattice Ideals and Integer Linear Programming." Rev. Mat. Iberoamericana 19 (2) 287 - 306, September, 2003.


Published: September, 2003
First available in Project Euclid: 8 September 2003

zbMATH: 1094.13017
MathSciNet: MR2023185

Primary: 13D02 , 14M25
Secondary: 13P10 , 68W30 , 90C27

Keywords: Gröbner bases , Hilbert bases , integer linear programming , lattice ideal , regularity , resolutions , simplicial complex , syzygy

Rights: Copyright © 2003 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.19 • No. 2 • September, 2003
Back to Top