Open Access
Translator Disclaimer
March, 2002 A Parabolic Quasilinear Problem for Linear Growth Functionals
Fuensanta Andreu, Vincent Caselles, Joseé María Mazón
Rev. Mat. Iberoamericana 18(1): 135-185 (March, 2002).

Abstract

We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear parabolic equations in divergent form for which the energy functional has linear growth. A typical example of energy functional we consider is the one given by the nonparametric area integrand $f(x, \xi) = \sqrt{1 + \Vert \xi \Vert^2}$, which corresponds with the time-dependent minimal surface equation. We also study the asymptotic behaviour of the solutions.

Citation

Download Citation

Fuensanta Andreu. Vincent Caselles. Joseé María Mazón. "A Parabolic Quasilinear Problem for Linear Growth Functionals." Rev. Mat. Iberoamericana 18 (1) 135 - 185, March, 2002.

Information

Published: March, 2002
First available in Project Euclid: 18 February 2003

zbMATH: 1010.35063
MathSciNet: MR1924690

Subjects:
Primary: 35K55 , 35K65 , 47H06 , 47H20

Keywords: Accretive operators , linear growth functionals , nonlinear parabolic equations , nonlinear semigroups

Rights: Copyright © 2002 Departamento de Matemáticas, Universidad Autónoma de Madrid

JOURNAL ARTICLE
51 PAGES


SHARE
Vol.18 • No. 1 • March, 2002
Back to Top