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LOGIC OF ACTUAL INFINITY AND
G. CANTOR'S DIAGONAL PROOF OF

THE UNCOUNTABILITY OF THE CONTINUUM

A. A. ZENKIN

ABSTRACT. The idea of actual infinity is central to our con-
temporary understanding of the foundations of mathemat-
ics. Notwithstanding this fact the notion has resisted precise
and universally accepted definition. The well-known method-
ological principle enunciated by Wittgenstein that "math-
ematical statements get any meaning they may have from
rule-governed activities that involve them" here receives ap-
plication in elucidating the logical and mathematical nature
of actual infinity within the framework of Cantor's diagonal
proof of the uncountability of the continuum.

Since Cantor first constructed his set theory, two indepen-
dent approaches to infinity in mathematics have persisted:
the Aristotle approach, based on the axiom that "all infinite
sets are potential," and Cantor's approach, based on the ax-
iom that "all infinite sets are actual." A detailed analysis
of the "rule-governed" usage of 'actual infinity' reveals that
Cantor's diagonal proof is based on two hidden, but nonethe-
less necessary conditions never explicitly mentioned but in
fact algorithmically used both in Cantor's so called "naive"
set theory as well as modern "nonnaive" axiomatic set the-
ories. An examination of "rule-governed" usage of the first
necessary condition opens the way for a rigorous proof that
in reality Cantor's diagonal procedure proves nothing, and
merely reduces one problem, that associated with the un-
countability of real numbers (the continuum), to three new
and additional problems. The second necessary condition is
simply a teleological one possessing no real relation to math-
ematics.

Further analysis reveals that Cantor's Diagonal Method
(CDM), being the only procedure for distinguishing infinite
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sets on the basis of their cardinalities, does not distinguish in-
finite from finite sets just on the basis of the number of their
elements (cardinality); the results of CDM depend fatally
upon the order of real numbers in the sequences to which it
is applied. Cantor's diagonal proof itself is formally а "half"
of the well-known "Liar" paradox but which can be used to
produce a new set-theoretical paradox of the "Liar" type.

The "rule-governed" usage of 'actual infinity' within the
framework of Cantor's theory of transfinite ordinal "inte-
gers" shows that the mathematical sense of his transfinite
ordinals is expressible using the Aristotle-Peano axiom that
"if a 'thing' is an integer then 'thing' + 1 is an integer as
well," defined only for finite natural numbers regardless of
the referent of 'thing.' It will follow that the "ordinal" part
of Cantor's "Study on Transfinitum" is consistent and ir-
refutable; a 1-1-correspondence, indeed, exists between the
series of the common finite natural numbers and Cantor's
series of transfinite ordinals, preserving the natural order of
the finite natural numbers; i.e., the series of common finite
natural numbers and the series of Cantor's transfinite ordi-
nals up to the famous Cantor's transfinite eo are homothetic
(similar) and therefore their differences are inessential mathe-
matically speaking. The mathematical and logical legitimacy
of the operation '+Г applied to Cantor's 'omega' is neither
more nor less than the mathematical and logical legitimacy
of the operation '/2' applied to a common point of Euclidean
geometry.

The fact to be demonstrated is that ultimately Cantor's
diagonal proof engages us in an endless, potentially infinite,
and quite senseless paradoxical "game of two honest trick-
sters" (a new set-theoretical paradox) which, as Wittgenstein
alleged, "has no relation to what is called a deduction in logic
and mathematics."

Here it is argued that Cantor's proof does not in fact prove
the uncountability of the continuum, but rather proves some-
thing else entirely, viz. Aristotle's Thesis (stated in its later
canonized Latin form): "Infinitum Actu Non Datur." In
other words, it proves that an actual infinity "is never permit-
ted in mathematics" (Gauß), or alternatively speaking, that
in the words of Poincaré "there is no actual infinity; Can-
torians forgot that and fell into contradictions. [... ] Later
generations will regard set theory as a disease from which
one has recovered!" Stated in the more compelling language
of Brouwer: what we conclude is that Cantor's theory as a
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whole is "a pathological incident in the history of mathemat-
ics from which future generations will be horrified. "
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1. Introduction. ACTUAL INFINITY: T H E QUESTION IS NOT

CLOSED.

Infinity is one of the most enigmatic as well as one of the most
important conceptions in mathematics—which is, by right, called the
"science on infinity" since the ancient Greeks' time—as well as logic,
philosophy, cognitive science, and the intellectual history of humankind
more broadly construed.

One of the most outstanding mathematicians of the twentieth cen-
tury, D. Hubert, characterizes the important epistemological aspect of
the problem of infinity in the following oracular terms: " . . . the final
elucidation of the essence of infinity oversteps the limits of narrow in-
terests of special sciences and, moreover, that became necessary for the
honour of the human mind itself" [Hubert 1948]. Unfortunately, the
problem of "the final elucidation of the essence of infinity" is hitherto
far from its final solution. I shall try to ground this statement in this
Introduction.

Two sorts of infinity, opposed in nature, have been distinguished:
the potentially infinite and the actually infinite. This distinction was
explicitly introduced for the first time by Aristotle more than two mil-
lenniums ago [Aristotle]. In regard to the Aristotelian definition of
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potential infinity, it will be shown in what follows that it was in fact
quite rigorous, even from a contemporary point of view. A potential
infinity, understood as a process which can in principle be continued
forever, can never produce "a complete and existing entity" as its final
result [Aristotle]. Such a conclusion was generally accepted in mathe-
matics and from its inception posed few, if any, problems.

The earliest example of potential infinity was the series of common
finite natural numbers:

(NN)

How to extend the series is clear enough: for any natural number, n,
there exists another, n + 1, that is greater than all previous numbers,
1,2,3,... ,n. Consequently there is no maximal, last element of the
series (NN). Imagining the series (NN) completed would entail a fla-
grant contradiction: indeed, a step-by-step process of constructing the
series (NN) may, allegedly, be completed, but a 'halting' state of the
process cannot be shown. Such a situation conflicts not only with our
primitive intuitions, but with the millennial practice of the humankind
interaction with and cognition of the outer world, since according to
Hubert (and to modern science) "infinity is realized nowhere in physical
world" [Hubert 1948].

Since the time of Aristotle there have been on going debates over
matters such as whether an actual infinity exists, what such an actual
infinity might be, and the mathematical treatment of the actually infi-
nite, generally. Since the notion of an actual infinity was never strictly
defined, all such debates were largely in vain.

Cantor was the first to explicitly introduce the concept of an actual
infinity in mathematics. According to him, "the actual infinity is such
the quantity that, on the one hand, is not changeable, but is definite
and invariable in all its parts and represents a veritable constant mag-
nitude, however, on the other hand it surpasses by its magnitude any
finite magnitude of the same kind" [Cantor 1914]. There are a number
of other definitions of the 'actual infinity' to be found in Cantor, but
all are based on vague or speculative intuitions, just as are the more
contemporary arguments in favor of the actual infinity. However vague
the definitions may have been, Cantor and his followers declared the
series (NN) an actually infinite object along with any other infinite
sets.

By the end of the nineteenth century and into the early twentieth
century, Cantor's actualization of infinite sets generated a number of
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set-theoretical paradoxes and led to the Third Great Crisis in founda-
tions of mathematics. Much work of a remarkably high quality describ-
ing the Crisis, its reasons and possible ways of resolving it has been
written—much of it by key players in the ensuing debates (see, e.g.,
historical reviews in [Fraenkel and Bar-Hillel 1958], [Bourbaki 1965],
[Kleene 1957], and [Kleene 1967]). We can here address only a few
points specifically relevant to what is to follow.

1. For about two millenniums, the idea of the actually infinite was criti-
cized and rejected based for the most part on Aristotle's dictum "Infini-
tum Actu Non Datur"—his main statement in its canonized later Latin
formulation. Critics included, among other, Leibniz, Berkeley, Locke,
Descartes, d'Espinosa, Gauß ("/ must protest most vehemently against
[the] use of the infinite as something consummated, as this is never per-
mitted in mathematics"), Kant, Cauchy, Kronecker ("/ don't know what
predominates in Cantor's theory—philosophy or theology, but I am sure
that there is not any mathematics here"), Hermite, Poincaré ("There is
no actual infinity; Cantorians forgot that and fell into contradictions"
[Poincaré 1983]), Bair, Borei, Brouwer (Cantor's theory as a whole is
"a pathological incident in history of mathematics from which future
generations will be horrified" [Fraenkel and Bar-Hillel 1958]), Quine,
Wittgenstein, Weyl, Luzin, etc., many of whom were creators of what
S. Feferman, aptly describes as " "really working" mathematics
[Feferman 1998].

On the other hand, after Cantor, a pleiad of outstanding twenti-
eth century metamathematicians and set theorists including Hubert
( "No one shall expel us from the paradise which Cantor has created for
us!" [Hubert 1948]), Godei, Turing, Church, Tarski, etc., with their
famous "negative" theorems and paradigmatic epistemological concep-
tions constructed the great edifice of modern metomathematics and
axiomatic set theory basing it on Cantor's transfinite conceptions and,
most importantly, on his idea that "all infinite sets are actual."

So, we happen upon an almost unique situation in the history of
mathematics where one large group of outstanding mathematicians and
logicians would have nothing to do with the very idea of an actual
infinity, while another group, equally distinguished, stood resolutely
opposed.

One at first might be inclined to say that only modern Cantori-
ans know the truth about infinity, simply because they alone enjoy
possession of the greatest accumulation of all the humankind wisdom.
However, infinity is a very special 'thing' in the sense that no amount
technical progress will likely ever provide us with an understanding



LOGIC O F ACTUAL INFINITY . . . 33

equal by comparison to what we have come to know of what Kant de-
scribed as the "starry sky over a head and the moral law in our soul" ;
this notwithstanding the fact that Aristotle (not to mention Gauß,
Kronecker, Poincaré, Weyl, Brouwer, etc.) knew more about the math-
ematical nature of the infinity than many modern day apologists for
Cantor's paradigm of the actual infinity (see below).

In a word, as regards the ancient problem of the true (mathematical)
nature of the actual infinity, the question remains unresolved.

In this connection it seems quite doubtful a widespread metamath-
ematical opinion that "Cantor's view [as to the actualization of all
infinite sets—AZ] prevailed and modern mathematics accepts actual
infinity" [Wikipedia]. Indeed, a number of well-known mathematicians
and logicians remain in a state of disagreement. For example, one out-
standing logician and expert on the foundations of mathematics, S. Fe-
ferman writes in his recent (and remarkable) book [Feferman 1998]:

But there are still a number of thinkers on the subject
who in continuation of Kronecker's attack, object to the
panoply of transfinite set theory in mathematics [... ]
In particular, these opposing points of view reject the
assumption of an actual infinity (at least in its nondenu-
merable forms). Following this up, alternative schemes
for the foundations of mathematics have been pursued
in a direct and straightforward way on philosophically
acceptable non-Cantorian grounds.

Furthermore, a case can be made that higher set the-
ory is dispensable in scientifically applicable mathemat-
ics, i.e., in that part of everyday mathematics which finds
its applications in the other sciences. Put in other terms:
the actual infinite is not required for the mathematics of
the physical world.

J. Peregrin ("There is not an actual infinity" [Peregrin]),
V. F. Turchin ("For actual infinity we have no place in [...] the global
cybernetic theory of evolution and in the constructivist foundation of
mathematics" [Turchin]), and many other modern experts in founda-
tions of science today adhere to a rejection of the actual infinity con-
ception. So we see that the acceptance of actual infinity is by no means
unanimous in contemporary mathematics. This is worth examining in
greater detail.

2. In the mid-twentieth century Cantor's original set theory was de-
clared "naive" (see, e.g., [Kleene 1967]). Following Kleene, modern
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axiomatic set theory assumed that "set theoretical paradoxes are con-
nected with the introduction of sets that are "too large," e.g., sets
like the set T of all sets" [Kleene 1967]. But this is almost certainly
incorrect. Indeed, the cardinality of the set T must be greater than
the cardinality of any other set, but, according to Cantor's theorem,
the cardinality of all subsets of T is greater than the cardinality of
the initial set T of all sets (Cantor's paradox). However, the para-
doxical conclusion obtains if and only if the set T is an actually in-
finite object, since if T were potentially infinite then, in accordance
with Aristotle's view, the question itself as to a differentiation of in-
finite sets by their cardinality simply never arises. The same holds
in the case of the known Burali-Forti paradox with respect to an
ordinal number of all ordinal numbers. The real basis of the set-
theoretical paradoxes is just the actuality of infinite sets, and not that
any predicate P(x) generates a definite set of all x, for which P(x)
is true ([Cantor 1914], [Bourbaki 1965], [Kleene 1967], [Zenkin 2001],
[Zenkin 1997a], [Zenkin 1997b], [Zenkin 1997c]).

However that may be, following the declaration that Cantor's set
theory is "naive," the notion itself of actual infinity disappeared from
logical analysis, metamathematical and set-theoretical textbooks and
tractates, regarded as speculative, vague, and fuzzy. Consider the fol-
lowing which is the key axiom of any modern "nonnaive" axiomatic set
theory.

Axiom of Infinity ([Fraenkel and Bar-Hillel 1958], [Kleene 1967]).
There exists at least one infinite set—the set {1 ,2 ,3 , . . . } of natural
numbers.

N. Bourbaki has an even shorter formulation:

Axiom of Infinity ([Bourbaki 1965]). There exists an infinite set.

If one attempts to get at whether these axioms require an actual
or potential infinity one will remain at a loss. For it is only in the
historical literature that the alternative is profitably discussed. On the
other hand, every modern metamathematician and set-theorist knows
all too well that if the "infinite set" of these axioms is potential, then
the set-theoretical theories of transfinite ordinals and cardinals can be
deleted without any prejudice for "really working" mathematics.

3. Any modern metamathematical and set-theoretical tract contains
reference to Cantor's famous theorem that for any set M the cardinality
of the set of all subsets of M is greater than the cardinality of the
initial set M, and "the most important partial case of this theorem—
the theorem on the uncountability of the continuum" ([Cantor 1914],
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[Alexandrov 1948]). This theorem is the sole logical basis allowing
modern set theorists to distinguish infinite sets on the basis of their
cardinality. On the other hand, the theorem is the "Trojan horse" of
a "naive" Cantonan set theory, one contained within the framework
of the modern "nonnaive" axiomatic set theory in the sense that the
theorem is not provable if the corresponding infinite sets are potentially
infinite. In other words, accepting the theorem requires that axiomatic
set theory itself include Cantor's conception of the actualization of all
infinite sets. Thus, the problem of the logical legitimacy of actual
infinity in mathematics is real as well as unavoidable—independently
of whether modern meiamathematics and axiomatic set theory include
discussion of the problem.

However, the axiomatic set theorists are absolutely right in stat-
ing that all existing definitions of 'actual infinity' are unsatisfactory
and have no role to play in serious logical and mathematical anal-
ysis ([Fraenkel and Bar-Hillel 1958], [Bourbaki 1965], [Kleene 1957]).
In such a circumstance, in order to reveal the true sense of the ac-
tually infinite and to render the notion accessible to nonspeculative
analysis, there is only one way, which, strictly speaking, has been well
known for a long time, but which was probably best formulated by
L. Wittgenstein [Wittgenstein 1956] (cited by [Hodges 1998]): "Math-
ematical statements get any meaning they may have from rule-governed
activities that involve them."

In the paper we shall consider the central notion of modern "non-
naive" axiomatic set theory, viz. Cantor's famous theorem regarding
the uncountability of the continuum and his diagonal procedure for
proving this theorem. In addition there will follow a detailed logical
analysis of the nature of actual infinity based on its real, algorithmi-
cal, "rule-governed" usage within the framework of Cantor's diagonal
argument, rather than the traditional "fuzzy" conception.

2. ARISTOTELIAN AND NON-ARISTOTELIAN (CANTORIAN)

MATHEMATICS.

Consider, then, the main problem of mathematics—the problem of
infinity. As noted earlier, it was Aristotle who first explicitly distin-
guished two opposing types of infinity—potential infinity and actual
infinity. The logical essence of potential infinity was defined by Aris-
totle as follows: "... the infinite exists through one thing being taken
after another, what is taken being always finite, but ever other and
other" [Aristotle] (cited by [Moore 1993]). With little effort it can be
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shown that Peano's now famous axiomatic system is a literal but natu-
ral formalization of the Aristotelian definition of the potential infinite.

Indeed, from Aristotle's definition of the potentially infinite we have:

(1) there is a first 'thing,' say, '0' (since any ordered finite sequence
of 'things' has a first 'thing');

(2) if n is a 'thing' then n + 1 is a 'thing' too (since "one thing
[n + 1] being taken after [>] another [n] . . . " ) ;

(3) there are no other 'things' aside from those derived by means
of (1) and (2).

(l)-(3) represent the inductive definition of the series (NN) of the
common finite natural numbers in its modern form [Kleene 1957].

Adding to (l)-(3) the later axioms

(4) for any 'things' n and m, if n = m then n + 1 = m + 1;
(5) for any 'thing' n, n + 1 ф 0;
(6) [P(0) & [Vn [P{n) ->• P{n + 1)]]] ->• [VnP(n)],

we arrive at Peano's axiomatic system for arithmetic from which, ac-
cording to Poincaré, "almost all mathematics can be deduced"
[Poincaré 1983]. In fact, one cornerstone of the arithmetic just is Aris-
totle's inductive definition of the potential infinite series (NN) of the
common finite natural numbers; and this is a fact that must be given
considerable emphasis.

As for the actually infinite, Aristotle postulated his famous, and well
argued for, thesis: "there will not be an actual infinite. . . . the infinite
has a potential existence" [Aristotle], or, briefly, "Infinitum Actu Non
Datur." So, according to Aristotle, actual infinity is simply the logical
negation of potential infinity and, as such, is a scientific impossibility
in addition to being logically flawed. In a word, the actually infinite
is self-contradictory, i.e., it is something like a "finitized infinity," see
below.

However, from the mathematical standpoint, Aristotle's statement
that "the infinite has a potential existence" was never proved math-
ematically, amounting to a highly intuitive guess by a great genius,
nothing more or less. Statements which are accepted and used in
mathematics without a proof are called "axioms"; therefore, Aristo-
tle's guess must be regarded as an "axiomatic" statement and must be
written in the language of modern mathematics as follows.

Aristotle's Axiom (third century B.c.). All infinite sets are poten-
tially infinite.
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In the second half of the nineteenth century, Georg Cantor "rejected
the [scientific] authority of Aristotle, Leibniz, Gauß, Cauchy, and oth-
ers" who objected categorically against the actual infinity and declared
the contradictory thesis: "all infinite sets are actual" ([Cantor 1914],
[Cantor 1985]).

However that may be, since Cantor's thesis is so far unproven (but is
implicitly used in all modern "nonnaive" axiomatic set theories without
a proof), it, too, must be rewritten in modern mathematical language
as follows.

Cantor's Axiom (nineteenth century A.D.). All infinite sets are ac-
tually infinite.

Thus, in reality we now have not merely one, but two mathematical
systems: first, the classical, Aristotle-Peano mathematics of infinite
sets, based upon Aristotle's Axiom, and, secondly, non-Aristotelian
(Cantonan) mathematics based upon Cantor's Axiom, that is, the log-
ical negation of the Aristotle's own Axiom.

Just the axiomatic character both of the statements explains, in
particular, why during roughly two millenniums nobody has been able
to prove the actuality of infinity, nor have they been able to disprove
its potential character.

From the very invention of Cantonan set theory in the 70s of the
nineteenth century, these two mathematical conceptions lead an inde-
pendent existence: indeed, the really working Aristotle-Peano mathe-
matics used never, even to this day, the "paradigmatic achievements"
of transfinite Cantonan mathematics (see [Feferman 1998], [Turchin]).

This situation resembles the dramatic history of Euclidian and non-
Euclidian geometries based as they were on acceptance or rejection of
Euclid's Fifth Postulate regarding parallels. However, there remains an
important difference: the consistency of non-Euclidian geometries was
strictly proved, but the consistency of modern "nonnaive" axiomatic
set theory based upon Cantor's Axiom has so far gone unproven. This
means that there is a nonzero possibility that Cantonan 'transfinite
mathematics' is inconsistent and will therefore ultimately be rejected.

The fact that statements as to either the actuality or potentiality of
infinity have the character of axioms also explains exactly why Aristo-
tle's adherents (first of all Kronecker and Poincaré) failed to exclude
Cantonan actual infinities from mathematics.
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3. T H E RULE-GOVERNED USAGE OF THE 'ACTUAL INFINITY'

CONCEPTION WITHIN THE FRAMEWORK OF CANTOR'S

DIAGONAL PROOF.

As it was said above, Cantor's epochal achievement was his now
famous theorem showing the uncountability of real numbers or, what
amounts to the same thing, the uncountability of the continuum. It
must be underscored once again that Cantor's theorem is a cornerstone
of all current metamathematics and all current "nonnaive" axiomatic
set theories in the sense that without this theorem any talk itself of
distinguishing infinite sets by the number of their elements (i.e., by
their cardinality) is reduced to nonsense [Kleene 1967].

The value of Cantor's theorem for "naive," as well as "nonnaive," ax-
iomatic set theory is defined also by the other fact. Usually, when math-
ematicians talk about set theory, they mean something whole. But in
reality, set theory consists of two absolutely independent parts: the
theory of transfinite ordinal numbers, and the theory of transfinite car-
dinal numbers. There is only a bridge between these two theories, and
that is just Cantor's theorem regarding the uncountability of the con-
tinuum and its direct consequence—the famous Cantonan continuum
hypothesis, subject matter of Hubert's First Problem ([Zenkin 1997a],
[Cohen 1966], [Zenkin 1999], [Zenkin 1997d], [Zenkin 1998]). As Kleene
observes, the idea itself of a comparison of infinite sets on the basis of a
number of their elements would be of little interest were it not for Can-
tor's theorem on the quantitative nonequivalence of the sets of natural
and real numbers [Kleene 1967]. This theorem is based on Cantor's
axiom inasmuch as without it the theorem is simply unprovable. It is
well worth considering here that in modern "nonnaive" axiomatic set
theory this fact is hardly, if ever, explicitly mentioned.

Now we shall examine in some detail how "rule-governed" usage of
the actually infinite is realized within the framework of this proof of
Cantor's theorem.

To begin with, consider Cantor's traditional diagonal proof
([Cantor 1914], [Alexandrov 1948], [Hodges 1998],
[Capiñski and Kopp 1999]). Below N = {1 ,2 ,3 , . . . }, X is the set of
all real numbers (points) belonging to the segment [0,1] and, for sim-
plicity, we shall use the binary system to represent real numbers. Note
that the further conclusions of this paper hold for any radix greater
than 2 (for details see [Zenkin 2000a], [Zenkin 2001], [Zenkin 1997b]).
In the curly braces {L:} we place a label L for further references to the
sentence positioned immediately following the label.
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Cantor's Theorem (1890). {A:} The set X is uncountable.

Proof (by the Reductio ad Absurdum method).
Assume that {~>A:} the set X is countable.
Then there is an enumeration of all real numbers of X.
Let {B:}

(E) x1,x2,x3,...

be an arbitrary enumeration of all real numbers of X.
Consider a so-called 'diagonal' of the enumeration (E),

( D ) О.ХцХ22ХзЗ-- -Xnn---,

i.e., consider the infinite sequence of binary digits, where the digit ХЦ
is the first digit of the first real number xi in the given enumeration
(E), the digit x22 is the second digit of the second real number x2 in
the enumeration (E), the digit ж33 is the third digit of the third real
number x3 in the enumeration (E), and so on.

Next, Cantor constructs (creates, defines, etc.) a new infinite se-
quence of binary digits,

(anti-D) y x = О . у п У и У п - - - У ы - - - ,

by application of the constructive algorithm of his famous diagonal
method in the form of the following "diagonal rule" to the
'diagonal' (D):

(R) for any i > 1:

[[if ХЦ = 0, then уц := 1] and [if хц = 1, then уц := О]].

where the notation 'a := V means "to give the value '6' to the variable
(place) 'a' " as is usually done in any modern algorithmical language.

It is evident that an infinite sequence of binary digits, such as yi,
will by definition be a real number belonging to the set X and will by
its construction differ from the first real number x\ of the enumeration
(E) in at least its first digit yu, from the second real number x2 of
the enumeration (E) in at least its second digit y±2, and so on. So,
the (anti)diagonal real number у± will differ from each (or from any)
real number within the enumeration (E), and—as a consequence^.)—
from all real numbers of the enumeration (E). This necessitates the
conclusion that:

{-iB:} the given enumeration (E) is not

an enumeration of all real numbers of X.
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The contradiction between -iB and В proves—according to the meta-
mathematical version of the Reductio ad Absurdum (further—RAA)
method [Kleene 1957]—that the assumption -iA is false. D

So, the key points of Cantor's proof are as follows.

(1) The ultimate aim of the diagonal method is to create a new
individual mathematical object which a) is a real number of X
and b) differs from all real numbers of a given infinite sequence

(E);
(2) The contradiction in the proof is between a formal consequence

(here: B) of the assumption, i.e., of a nonauthentic premise
(here: ~>A), and its formal consequence (here: ~>B), i.e., a
contradiction of the following quite specific form:

[B -+ -,B].

It should be remarked here that, all other contradictions of the form
[yi G (E) (due to assumption)] & [yi Ф_ (E) (due to construction)]
or [yi ф yi] (by virtue of the same reason) that are usually used in
traditional metamathematical tracts and set theoretical textbooks, are
secondary consequences just of the initial contradiction, [B —у -iB].

(3) The falsity of the nonauthentic^.) consequence, B, of the nonau-
thentic^.) assumption -iA is proved not by RAA, but by means
of the law of contradiction: Cantor's (cmizdiagonal) real number
y i is a counterexample to the common statement B.

(4) Strictly speaking, the 'diagonal rule' (R) says that the real num-
ber yi differs from every (or from any) given real number Xi of
the given sequence (E). The statement that the number yi
differs from all real numbers of the infinite sequence (E) is a
consequence based on the quite specific "metalogical" rule:

(Rl) If P(m) holds 'for every' ('for any') given m G M

then P(m) holds 'for alV m e M.

It should be remarked here that, of course, the statement uP(m)
holds 'for every' ('for any') given m G M" is a formal consequence
of the statement uP(m) holds 'for alV m G M"; however, the inverse
statement (Rl) implies that the set M is either finite or actually infi-
nite (see below). It is common knowledge that the universal quantifier
in \/mP(m) tells us nothing about how many elements are in the do-
main M of the interpretation of the variable m, i.e., whether M is
finite or infinite. It's also evident that the universal quantifier fails to
reflect the obvious semantical distinction between the two (contradic-
tory!) cases, viz. where the domain M is an actually infinite set and,
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secondly, where the domain M is potentially infinite. Within the frame-
work of Cantor's proof, the set X and the sequence (E) are actually
infinite and only therefore the "metalogical" rule (Rl) is applicable.
However if the domain, M, is considered as a potentially infinite set,
then the logical legitimacy of the rule (Rl) becomes doubtful and re-
quires serious clarification or emendation (concerning the details of the
problem see [Zenkin 1997b], [Brouwer 1954]).

4. T H R E E ODD PECULIARITIES OF CANTOR'S DIAGONAL M E T H O D

(CDM).

4.1. The C D M does not distinguish finite and infinite sets by
their cardinalities. [Zenkin 2000a].

It is obvious that if the enumeration (E) is finite, then its diago-
nal (D), and the corresponding "antidiagonal" sequence (anti-D) will
also be finite, and in such a case neither (D) nor (anti-D) defines any
real number at all in the accepted mathematical sense of 'real number'
as an infinite sequence of (binary, decimal, or any other) digits. The
inapplicability of CDM to finite enumerations has in the past always
appeared so obvious that nobody ever made the effort to examine the
issue. This is, however, merely symptomatic of an ingrained psycholog-
ical stereotype attributable to traditional metamathematical thinking.

Indeed, as is generally conceded, the final result of an algorithm's
work can not depend upon a concrete place where intermediate as well
as the final results are produced and saved (in memory, on paper, in a
computer memory, and the like); otherwise, one and the same algorithm
would produce different final results, depending on facts extraneous to
mathematics such as the mental health of a human being, the size of
the paper or its quality, or more significantly on preceding states of
the computer's memory and the current "mood" of a computer, etc.
Keeping this in mind, let's take an arbitrary infinite binary sequence as
an initial "half-finished product" for CDM-building the Cantonan (an-
tidiagonal) real number yi. The simplest of such sequences is obviously
the identical (real) zero:

(DO) 0 .0i0 2 0 3 . . .0 n . . . ,

Now apply Cantor's 'diagonal rule' (R) to the enumeration (E) tak-
ing the following equivalent form:

(R2) for any i > 1:

[[if ХЦ = 0, then 0¿ := 1] and [if хц = 1, then 0¿ := 0]].

where 0¿ is the ith digit of the "half-finished product" (DO); that is, we
shall use the (DO) as a place for the storage of the digits of Cantor's
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( anti)diagonal real number constructed by means of applying CDM to
(E). It is easy to see that now, literally repeating Cantor's diagonal
reasoning, we shall get a real number which identical to Cantor's real
number y±.

But what will happen just in case the enumeration (E) is finite! It
is obvious that while applying Cantor's diagonal method in the form
(R2) to any finite enumeration of some real numbers from X, say, to

(El) xi,x2,x3,...,xn,

we shall obtain a rational number (even with the zero "tail"):

zi = O.zuzuzui... Zin000 ...

This number is an element of X, and differs from each (any) real num-
ber of the finite enumeration (El), and, according to the rule (Rl), as
a consequence . . . it differs from all elements of the finite enumeration
(El).

Thus, Cantor's diagonal method is precisely applicable to both in-
finite and finite enumerations without alteration. Consequently, the
method does not distinguish and nor does it take into account quanti-
tative characteristics of those sets and enumerations which the method
is applied to. We arrive at the following conclusion, strange as it may
be from the classical logic point of view: the only method, which hith-
erto allows metamathematicians "successfully" to differentiate infinite
sets according to their transfinite "powers/cardinalities," i.e., accord-
ing to the number of their elements, does not differentiate finite from
infinite sets just according to their "powers/cardinalities" !

If so, then which properties of the infinite enumeration (E) does
Cantor's diagonal method take into account and explicitly, algorithmi-
cally employ? It is obvious that it can be only a property which is the
same both for finite and infinite sets, viz. the property of'being actual.'
The nature of this property from the algorithmical point of view will
be examined (see §§5 and 6), but for now we may conclude that the
condition that application of the 'diagonal rule' (R2) to every (any)
element of a given enumeration (E) generates an individual mathemat-
ical object yi as a final result, i.e., the requirement of the actuality of
the infinite set, X, and the infinite enumeration (E), allows Cantor to
assert that his new real y\ differs from each (any) element of the given
enumeration (E). Then, according to the quite doubtful rule (Rl),
it follows that Cantor's real y\ differs from all elements of the given
enumeration (E), and therefore, the enumeration (E) does not contain
all elements of the set X.
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Thus, it is only this property of the actuality that enables Cantor to
achieve the desired contradiction his proof requires, taking the form,
as above indicated, of that quite strange deductive "implication" [B —y
-В].

It is appropriate, nonetheless, to emphasize that there are very differ-
ent contradictions in logic, and every contradiction has its own reason,
origin, and structure. Analyzing carefully such reasons, origins and
structure is much to be desired, before some may claim: "Oh! A con-
tradiction is obtained, consequently ... !"—This is particularly true in
connection with such a power technique as the classical RAA-method
applied to such fine 'things' as the actually infinite sequences of real
numbers.

4.1.1. Remark. Some detailed points concerning the logic of Cantor's
RAA-proof. Indeed, within the framework of Cantor's RAA-proof, the
desired falsehood of the assumption -i A follows not from the obtained
contradiction [B —y -iB]. As has already been said, from that contra-
diction and the independently proven truth of the formal consequent
-iB it follows that the antecedent В is false by the contradictory law,
but not by way of the traditional prepositional calculus with its tabu-
lar "if consequent is true then antecedent is false" which is here simply
irrelevant and is empty talk. And only then the desired falsehood of
the assumption -i A follows from the (now proven) falsity of the formal
consequence В arrived at from the premise -iA by the classical modus
tollens rule. Thus, we see that the logic of Cantor's RAA-proof is not
trivial and has some quite subtle distinctions when compared with Aris-
totle's classical Reductio ad Absurdum ([Zenkin 2001], [Zenkin 1997a],
[Zenkin 1997b]).

In this regard, the logical explication of the real "rule-governed" us-
age of Cantor's famous diagonal method shows that the method makes
explicit (but tacit) use of the actuality property of infinite sets and enu-
merations, while making no reference to their quantitative properties.
This fact necessitates a deeper consideration of the issues.

4.2. The results associated with applying CDM depend cru-
cially upon the order of real numbers in the sequences to
which CDM is applied. [Zenkin 1997a].

As we have seen above, application of CDM to the countable se-
quence (E) generates an infinite sequence of binary digits (anti-D)
which

(1) by definition, is a new real number yi E X and
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(2) by its construction, differs from all real numbers of the sequence
(E).

These two conditions, (1) and (2), by themselves entail the conclusion
that the real number yi is not an element of the given enumeration (E),
i.e., Vl i (E).

Now, based on the well-known clauses of Cantor's theory of transfi-
nite ordinals, we transform the given countable sequence (E) into the
following new countable sequence of the same elements:

(E2) x2,x3,...,x1,

that is, we simply remove the first real number x\ after all other real
numbers in the initial actually infinite enumeration (E).

It is obvious that the countable enumeration (E2) comprises all el-
ements of the initial enumeration (E) and differs from (E) only in the
order of only one of its elements.

Now we apply CDM to the countable enumeration (E2). It is easy
to see, in such a case that we will obtain the following infinite sequence
of digits:

y*i =

This is a countable sequence consisting in the same binary digits as
Cantor's real number yi, but now the ordering is of Cantor's ordi-
nal (to + l)-type. Obviously such a sequence is not a common real
number. By definition, it is a nonstandard real number ([Davis 1980],
[Uspensky 1987]), one which is not an element of the set X. Conse-
quently, though the infinite binary sequence y{ differs in construction
from any of the real numbers in the enumeration (E2) as well as any in
Cantor's (E), it now provides no reason to reject the assumption -iA
that the set X is countable.

In this instance Cantor's proof is not valid.
So, the result of applying CDM to a countable sequence of real num-

bers essentially depends upon the order of elements in such a sequence.
It is a quite strange peculiarity of the method which was specially in-
vented by Cantor in order "to prove" just the quantitative nonequiva-
lence of infinite sets. But, according to Cantor's well-known definition
of the cardinality notion, the quantitative equivalence or nonequiva-
lence of infinite sets can't depend upon the ordering of elements of the
sets.

4.3. Cantor's proof is 'half the "Liar" paradox. ([Kleene 1957],
[Fraenkel and Bar-Hillel 1958], [Zenkin 2000a], [Zenkin 2000b],
[Zenkin 1997e], [Zenkin and Zenkin 2002].)
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Consider Epimenides' charming case of the "Liar" : someone asserts
"I am a liar—who am I?"

If I am a liar then I am lying in stating that "I am a liar." Conse-
quently, I am not a liar.

But if I am not a liar then I tell truth when I say "I am a liar."
Consequently, I am a liar.

Where A = "I am a liar," we have the following canonical schema
of the "Liar" paradox (as well as the Russell's paradox concerning the
"the set of all sets which are not elements of themselves," etc.):

(L) [A -)• -.A] & [-.A -)• A]

Cantor's proof, as we see above, contains the following deductive
fragment (here: В = "an enumeration contains all real numbers of
Xn):

(LI) [B -+ -,B],

Here we have, formally speaking, the left half of the "Liar" paradox

(L).
Of course, the "deduction" (LI) is not a quark of theoretical physics;

but, as is well known, the like halves were not ever revealed in Na-
ture either. It's natural, therefore, to conjecture that Cantor's formal
"implication" (LI) is in reality one half of a new set-theoretical para-
dox and can be completed to form an entire canonical paradox of the
"Liar"-type (L).

Indeed, this can be shown formally: to begin with we substitute В
in (LI) for -iB, producing the formula [-iB —У —<[—<B]], and then, by
double negation (here: —<[—<B] is B), we arrive at the inverse "implica-
tion" [-iB —У В]. If within the framework of a system it is possible to
deduce the "implication" [B —y -iB] (LI), then within the framework
of the same system it is possible to deduce the inverse "implication"
[-•В —у В] and consequently within the framework of such a system it
is possible to deduce a complete paradox of the "Liar"-type:

(L2) [B ->• -.В] к [-.В ->• В],

Later on it will be shown how such a new set-theoretical paradox
(L2) can actually be deduced within the framework of Cantor's origi-
nal proof (see §9) while conforming to Wittgenstein's "rule-governed"
criterion.
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5. ALGORITHMICAL DEFINITION OF actual infinity.

Now we shall give an interpretation of Cantor's diagonal proof in
terms of what we will call a "Cantor-Turing machine" or a CT-machine
for short.

We define the CT-machine as follows.
Suppose we have

(1) two boxes: a left box (L-Box) and a right box (R-Box);
(2) a limitless tape T divided into cells.
(3) an arbitrary set X.

In such a case the CT-machine works as follows.

(1) The initial state of the CT-machine: all elements of the set X
are placed in the L-Box; the R-Box is empty, and the tape T is
positioned in the first cell with the number '1 . '

(2) At every (any) ith step, г > 1, the CT-machine:
(a) removes an element x G X from the L-Box;
(b) indexes the element x using the number i of the current

step thereby producing the indexed element xf,
(c) prints, in the ith cell of the tape T, a pair {г, di} of natu-

ral numbers, where i is the number of a current step and
di is defined by some specific, individual properties of the
element Xi and is explicitly specified by the rule <¿¿ = f(xi)
for every (any) ith step; the rule itself is, of course, ex-
plicitly defined before the CT-machine begins its work (in
Cantor's case, such a rule amounts to being his 'diagonal
rule' (R) or (R2));

(d) places the element Xi into the R-Box.
(3) The 'halting' condition:

IF the L-Box is empty THEN stop ELSE go to the step (2a).

As for the 'halting' problem in relation to the CT-machine, there are
the following cases.

(1) If the set X is finite, then the CT-machine will always eventually
reach its STOP-state.

(2) If the set X is infinite, then we have the two cases:
(a) If the infinite set X is potential, then (by definition) the

CT-machine will never reach its STOP-state, i.e., the L-
Box will never be empty.

(b) If the infinite set X is actual, then the L-Box will eventually
be empty and the CT-machine will eventually reach its
STOP-state.
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So, if the infinite set X is actual, then the CT-machine reaches its
STOP-state and generates as a final result the actually infinite sequence
of pairs,

(P) { 1 , d i } , { 2 , d 2 } , { 3 , d 3 } , . . . , { n , d n } , . . . ,

or, equivalently, two actually infinite sequences:

(NN) l , 2 , 3 , . . . , n , . . .

and

(Dl) di,d2,d3,...,dn,....

It is worth mentioning that the sequence (Dl) contains in a fixed form
information about every element of the set X in the sequence (E) and
also about every step of the CT-machine's action.

We are now able to give, for the first time, algorithmical definitions of
the property 'to be actual' for finite and countably infinite sets, i.e., we
are now able to define the fundamental notions of modern metamath-
ematics and axiomatic set theory, based on their real, "rule-governed"
(Wittgenstein) usage within the framework of Cantor's diagonal proof

Definition 1 of 'actual infinity'. An infinite set X is actual if and only if
the corresponding CT-machine, applied to X, reaches its STOP-state.

The same definition in terms of Cantor's diagonal proof can be for-
mulated as follows.

Definition 2. The infinite set X of real numbers is actual if and only if
the application of a step-by-step algorithm (here—Cantor's Diagonal
Rules (R) or (R2)) to every (any) element of the set produces as a
final result of the algorithm's work an individual object (here—a new
real number as a completed, invariable infinite binary sequence) which
is different ufrom every" (ufrom any"), and, due to the rule (Rl) , as
a consequence, afrom all" elements of the infinite set X.

6. ALGORITHMICAL DEFINITION OF THE real number NOTION.

6.1. Definition of the real number notion based on actual in-
finity. From what has been said above we can now give a rigorous
definition of the real number concept based on how it is used within
the framework of Cantor's diagonal proof.

Definition 1. A real number (of the segment [0,1]) is an infinite se-
quence of digits generated by a CT-machine,

(D2) d = (UIGMS,

where:
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(1) the infinity of the sequence (D2) is actual;
(2) the actual infinity of the sequence (D2) is countable;
(3) the countable actual infinite sequence (D2) is a well-ordered

one of Cantor's co-type.

6.1.1. Remark. A hidden vicious circle within Cantor's diagonal pro-
cedure. It is obvious that if even one of the conditions (l)-(3) fails to
hold, then Cantor's proof becomes invalid. Now assume an impossible,
that is, assume that the set N and the set X are both uncountable.
Then the enumeration (E) will really contain all real numbers of the
uncountable set, X. In such a case, the application of Cantor's diagonal
procedure to such an enumeration as (E) will produce an uncountable
sequence of digits like (D2) which, however, fails to satisfy point (3)
of our Definition 1 of 'real number.' In other words, the sequence of
digits will not be an element of the set, X. If the set, X, were really
uncountable, and if the sequence (E) really were to contain all elements
of X, then application of Cantor's diagonal procedure to such the se-
quence (E) would simply generate an "object" that is not an element
of X, something that does not provide the desired final result. Thus,
Cantor's RAA-proof includes, at least implicitly, the condition that the
diagonal procedure itself is simply not applicable to sequences of reals
having a cardinality that is greater than that of the countable. That is
a very fine point, one which requires further consideration—especially
in connexion with the quite significant isomorphism of logical struc-
tures in Cantor's diagonal proof of the continuum uncountability as
well as Pythagoras' diagonal proof of the potential infinity of the set
of common finite natural numbers (see Table 1).

6.2. Definition of the real number notion based on potential
infinity. What are the real numbers in 'really working' mathematics?

One possible definition can be formulated in term of a CT-machine
as follows.

Naturally, we must now change the last step of the CT-machine
algorithm to the form:

(3) Go to (2a), i.e., the 'halting' condition is simply absent in this
case.

We get the following

Definition 1. A real number (D2) is a 'thing' that exists through [its
every nth approximation] being taken one after another, what is taken
being always finite, but ever other and other" (almost by Aristotle).

We shall now provide a different definition of 'real number' more akin
to that used in "really working" mathematics. Suppose, first, that we
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Notations:
X = [0,1],

{L:} is a label 'L' for references.
Cantor's Theorem
(1890).
{A:} The set X is uncountable.
Proof by the Reductio ad
Absurdum method.
Assume that {-•A:} the set X is
countable.
Then there is a list of all reals of
X.
Let { B:} the list
( 1 ) Ж 1 , Ж 2 , Ж 3 , . . .

comprise all reals of X.
Applying to list (1) the diagonal
rule,

Vi > 1 [[[xa = 0] -»• [yu := 1]]
к [[xa = 1] -»• [yu ••= 0]]],

Cantor creates a new real of
X, say,

У1 = 0-У11У12У13 • • • 5

such that:
4i>l[yi¿Xi],Le.,yit(l).

Consequently,
{-.B:} the list (1) does NOT
comprise all real numbers of X.
So, the contradiction of a special
kind,

[B -»• -B],
is obtained.
Prom the contradiction, it
follows that the assumption -iA
is false.
Consequently, it is proved that

{A:} the set X is uncountable.
a

Notations:
N = {1,2,3,...},

{L:} is a label 'L' for references.
Pythagoras' Theorem
(sixth century B.c.).
{A:} The set N is infinite.
Proof by the Reductio ad
Absurdum method.
Assume that {-•A:} the set N is
finite.
Then there is a list of all integers of
N.
Let { B:} the list
(1) l ,2,3,. . . ,n,
comprise all integers of N.
Applying to list (1) the diagonal
rule,

С := 1; Vi > 1 [С := С+1], К i < п,

Pythagoras creates a new integer of
N, say,

C = n + 1,
such that:

\fi> l[C>i], i.e., С £ (1).
Consequently,
{-.B:} the list (1) does NOT
comprise all natural numbers of N.
So, the contradiction of a special
kind,

[B -»• -B],
is obtained.
From the contradiction, it
follows that the assumption -iA
is false.
Consequently, it is proved that

{A:} the set N is infinite.
a

NO COMMENT
©1973 AZ

TABLE 1. Who in fact is the originator of the Diagonal Procedure?
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ask: What are the well-known real numbers: тг, e, л/2, In 10, sin 13°,
and so on? To answer the question consider, e.g., the number тг.

V is:

(1) a proper name of the corresponding algorithm which allows to
calculate any finite nth digit of the decimal representation of
the sequence:

тг = 3.1415926535897932384626433832795028841971693993751058...

(2) a proper name of an ideal 'final' result of the potentially infinite
process of this algorithm working, which by definition will never
reach its final STOP-state.

(3) a proper name of a special type of a variable which takes its
value from the potentially infinite set of finite approximations,
generated by the corresponding algorithm.

With this example in mind we now proceed to make more accurate
our definition of 'real number.'

Definition 2. Any real number (including any rational one), say, d of
the segment [0,1] is a symbolic proper name possessing the following
properties:

(1) It is a name of a concrete mathematical algorithm which allows
us to calculate and present a finite sequence of, say, decimal
digits of some length, n, for any given finite n,

(D3) O.did2d3,---,4-

(2) It is a name of an imaginary, ideal (not in Plato's "objective"
sense) final result of the potentially infinite process, that is, of
an "upshot" of the CT- machine working not having a STOP-
state by definition.

(3) It is a name of a special type of a variable which takes its value
from the potentially infinite set of finite approximations of the
(D3)-type generated by the corresponding algorithm mentioned
in §1.

(4) It is a name of a variable which can be used in any mathe-
matical expressions and may be substituted for any finite nth
approximation of the (D3)-type.

It is easy enough to see, the problem as to an actual infinity of the
set of 'all' approximations of the (D3)-type simply doesn't arise within
the framework of 'really working' mathematics. The problem exists
only in our imagination, not in actually working mathematics.
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6.2.1. Remark. Cantor's continuum "is mostly made of gaping holes."
As is known, the modern noted metamathematician, Gregory Chaitin,
at IBM's T. J. Watson Research Center in Yorktown Heights, New
York, "shattered mathematics with a single number" [Chaitin 2001].
Chaitin named this number Omega ['ÍT] (not to be confused with
Cantor's patent transfinite ordinal 'omega' ['w']!). Chaitin's Omega
is "an unending, random string of 0s and Is" where the value of nth
binary digit is defined by the condition of whether a certain Diophan-
tine equation ("that was 200 pages long and had 17,000 variables") has
a finite or infinite number of solutions for each value of some param-
eter n = 1, 2, 3, Chaitin states that each digit of such a binary
sequence "is as unrelated to its predecessor as one coin toss is from the
next," and therefore the number Omega is "the outstanding example
of something which is unknowable in mathematics."

According to Chaitin, his "Omega infects the whole of mathemat-
ics, placing fundamental limits on what we can know." He has found
that "the core of mathematics is riddled with holes." Chaitin has also
shown that "there are an infinite number of mathematical facts but,
for the most part, they are unrelated to each other and impossible to
tie together with unifying theorems. If mathematicians find any con-
nections between these facts, they do so by luck. Most of mathematics
is true for no particular reason. Randomness is the true foundation of
mathematics. Maths is true by accident."

"The fact that randomness is everywhere has deep consequences,"
says John Casti, a mathematician at the Santa Fe Institute in New
Mexico and the Vienna University of Technology. "Chaitin's work
shows that solvable problems are like a small island in a vast sea of
undecidable propositions," Casti says [Chaitin 2001].

"The Omega strain of incalculable numbers," Chaitin concludes his
metamathematical sentence upon mathematics, "reveals that mathe-
matics is not simply moth-eaten, it is mostly made of gaping holes.
Anarchy, not order, is at the heart of the Universe" [Chaitin 2001].

Of course, no really working mathematician will ever take seriously
Chaitin's apocalyptical 'diagnosis.' Even some metamathematicians
are shocked by such scandalous claims: "It has been shown conclu-
sively [... ] that Chaitin's philosophical interpretations of his work are
unfounded and false; they are based on various fatal confusions," Panu
Raatikainen states in his review of Chaitin's last books in Notices of
the AMS in 2001 [Raatikainen 2001], "And thus we have all the more
reason for doubting the claim that his approach can explain the true
source of the incompleteness and unsolvability theorems. As his philo-
sophical interpretations fall, so does this claim."
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However, Chaitin's claims above are quite reasonable if to attribute
them to the problem of limits "on what we can know" as to not math-
ematics but the nature of Cantor's continuum. Indeed, as it has been
shown above any mathematical definition of real number is based on an
infinite binary sequence of the (D2)-type generated by a definite algo-
rithm that allows to construct any nth digit of the sequence (now we
do not touch the question whether the infinite sequence (D2) is actual
or potential). It is reasonable to state that if such an algorithm is given
then the corresponding real number is given as well and is existent and
cognizable in the obvious mathematical sense defined by the definition
above. It is also quite reasonable to state that if for some real number
the corresponding algorithm generating a sequence of the (D2)-type
for this real number will not be ever defined, then such a real number
will not be existent ever and therefore such a real number will be an
unknowable 'thing' in the mathematical sense.

As is known, any algorithm is a finite string in some finite alphabet,
say in Chaitin's version of the LISP language, and therefore, according
to Cantor and Chaitin, the set of all possible algorithms is countable.
It means that the set of all real numbers that can be ever defined
by all these algorithms, i.e., a set of all cognizable real numbers, is
countable as well. Even if the humankind will live for ever and will be
engaged solely in writing new LISP algorithms and running them on
all computers to produce new and new real numbers in the form of the
(D2)-type sequences.

On the other hand, the set of all real numbers is, according to Cantor,
uncountable. The last means that a subset of all real numbers that will
not be ever presented as a sequence of the (D2)-type, i.e., a set of all
unknowable 'things,' is uncountable. Since, according to known 'algo-
rithmic information theory,' a knowledge that is contained in a count-
able set of cognizable real numbers in comparison with a 'knowledge'
that is contained in an uncountable set of unknowable real numbers is
a value that is much less than, say Leibniz's infinitesimal, then we can
state that Cantor's continuum is, using Chaitin's expression, "not sim-
ply moth-eaten, it is mostly made of gaping holes." Shortly, Cantor's
continuum as a whole is simply an unknowable 'thing.' Of course, if
and only if the continuum is actual and uncountable in Cantor's sense.

Other aspects of this problem connected with a rigorous mathemat-
ical proof of the theorem that there is an infinite set of 'real' gaps
between any two different cognizable real numbers are presented and
discussed in [Zenkin and Zenkin 2000].
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7. Two HIDDEN necessary CONDITIONS OF CANTOR'S DIAGONAL

PROOF.

There are no deductive rules, or algorithms, nor any 'really working'
mathematical proofs that are always applicable and valid: the applica-
bility of a rule, the effectiveness of any algorithm, as well as a validity
of any mathematical proof are strictly defined by necessary (and suffi-
cient) conditions for their realization. For example, no mathematician
will ever try to prove, say, the Pythagorean theorem a2 = b2 + c2

without the explicit showing of the condition that the corresponding
triangle ABC is right-angled since it is a necessary condition of such a
proof without which the proof simply lacks sense.

It will be quite useful to analyse those very conditions required
for the realization of Cantor's diagonal method; it will turn out that
such an analysis will generate some new, unexpected "rule-governed"
meanings of "Cantor's diagonal argument" and its ultimate conclusions
([Zenkin 2001], [Zenkin 2002a], [Zenkin 2003], [Zenkin 2000c]).

7.1. First hidden necessary condition of Cantor's proof. Both
Cantor's "naive" set theory, as well as modern "nonnaive" axiomatic
set theories, require the actuality of the infinite set X and the enumer-
ation (E) to be a necessary condition of Cantor's diagonal proof, since
if the enumeration (E)—and as a consequence the X itself and all its
infinite subsets—is potentially infinite then, as shown above, Cantor's
diagonalization process will never reach a STOP-state, and therefore
will never permit complete construction of Cantor's (anti)diagonal real
yi as an individual mathematical object. So, from the point of view of
'really working' classical mathematics, and taking into account the fact
that Cantor's axiom (above) was never formulated explicitly within the
framework of modern axiomatic set theory, the traditional metamath-
ematical formulation of Cantor's theorem is incorrect and must be set
right as the following conditional statement:

Cantor's Theorem (correction 1). IF the set X is actually infinite,
THEN X is uncountable.

It should be mentioned that the explication of this necessary condi-
tion of Cantor's proof, and the corrected formulation of the theorem
itself, violates no restriction either of classical, or metamathematical
logic. However, this necessary condition of the proof might be said to
be a hidden meaning of Cantor's proof since it has never been explicitly
mentioned.
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Now we shall show that a number of unexpected and fatal conse-
quences follow from such a natural and legitimate specification of Can-
tor's theorem.

To begin with, recall some familiar assertions of classical logic.
If we have two nonauthentic, i.e., so far unproven, premises (as-

sumptions), say A and B, in any deductive inference and if we have
deduced from these A and В "something known to be false" (accord-
ing to Aristotle) or "known to be a contradiction" (according to the
modern metamathematical version of the RAA-method [Kleene 1957],
[Fraenkel and Bar-Hillel 1958], [Hodges 1998]), then we can know only
that at least one of these two premises must be false. But as has been
well known since Aristotle, that uat least one" here means that we
fail to arrive at a single conclusion, instead we are faced with the fol-
lowing three, equal in their logic rights, conclusions (here T = Truth,
F = False):

(1) [A = F]k[B = T],
(2) [A = T]b[B = F],
(3) [A = F ] k [ B = F].

Thus, that version of the RAA-method which uses two assumptions
states nothing as to which alternative from among these three is correct.
Clearly, the RAA-method with, say, n = 10 assumptions is possible,
but it reduces n initial problems to 2n — 1, i.e., to 1023, new ones,
including all the initial ones(\). Since, in general, to solve even 10
initial problems is usually easier than the same 10 plus 1013 new ones,
the usual RAA-method has never more than a single assumption, at
least in classical logical and mathematical proofs.

Thus, the RAA-method with two assumptions proves nothing and is
from the standpoint of classical Aristotelian logic and "really working"
mathematics without value.

Now consider three nontrivial consequences of the "hidden" fact that
in Cantor's proof the set X is actually infinite.

7.1.1. Relativity of the continuum uncountability. "Naive" Cantonan
as well as all modern "nonnaive" axiomatic set theories try to con-
vince us that the number of reals in the infinite set X is consider-
ably greater than the number of natural numbers in the infinite set
N. P. J. Cohen for one writes in his famous monograph [Cohen 1966]:
The Continuum hypothesis "is a rather dramatic example of what can
be called (from our today's point of view) an absolutely undecidable
assertion . . . " (p. 13), and further: "Thus, [the cardinality of the set
X—AZ] is greater than tt0, ttn, #ш, #a, where a = #ш, and so on.
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Therefore, we shall even not try to imagine visually a set of integers of
a cardinality succeeding tt0 • • • " (p- 282).

Moreover, the notorious uncountability of the continuum is given
by modern metamathematics as its inner, 'genetic,' absolute property.
However, as correction 1 of Cantor's formulation above shows, uncount-
ability is not an absolute property of the continuum, but rather a con-
ditional one, valid (if any, see below) only within the framework of
Cantor's (axiomatic, i.e., not proven, i.e., taken on trust) paradigm of
the actualization of all infinite sets.

7.1.2. 'Deductive' pearl I. From logic to belief. Since no metamathe-
matician so far has disproved the Aristotle's potentiality of the infinite
sets, in general, nor of the set X, in particular, the actuality of X is
an unwarranted presupposition, i.e., in reality, it is a second assump-
tion of Cantor's proof and so we arrive at a RAA-method with . . . two
assumptions: aX is actual" and aX is countable." As shown above,
we have in such a case not the only Cantor's famous conclusion, but
following three, alternative conclusions all equally correct:

(1) X is actual and X is NOT-countable (Cantor).
(2) X is NOT-actual (i.e., potential) and X is countable (Aristotle).
(3) X is NOT-actual (i.e., potential) and X is NOT-countable (name-

less, so far).

From the point of view of classical logic, Cantor's proof is itself un-
able to answer the question as to which alternative among these three,
including Cantor's famous statement (1), is in fact true.

Thus, Cantor's "proof" of the uncountability of the set X of all real
numbers proves nothing and reduces the sacramental metamathemat-
ical question as to the distinguishability of infinite sets on the basis of
their cardinalities to a question of a belief: if your preference is for the
actual, then you may freely choose the first alternative (1) after Cantor,
if you together with "really working" classical mathematics put your
trust in Aristotle's potentially infinite, then the second alternative (2)
may well suit your taste; and finally, if you are someone who trusts
in nothing, then alternative (3) can be adopted without so much as a
single contradiction with classical logic.

Of course, some "ideological" logicians and metamathematicians may
shrug, saying: "no wonder, simply, by analogy with Euclidean/non-
Euclidean geometries, we have here not one, but three, equivalent, but
absolutely different, mathematics: first, Cantor's mathematics, based
on his axiom (above), second, a non-Cantorian mathematics, based on
Aristotle's axiom (above), and (so far) nobody's mathematics based,
most likely, on accepting both of the two incompatible axioms."
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Fortunately, as we shall soon discover, one need not go so far.

7.1.3. 'Deductive' pearl II. From meta- to para-mathematics. Every
generation of school children proves the Pythagorean Theorem for
roughly the last 2600 years. And every (good) pupil arrives at the
same result: a2 = b2 + c2. This means that in 'really working' mathe-
matics any once proven theorem remains valid regardless of how often
its proof is constructed. Apparently, some metamathematical theorems
do not enjoy similar "onerous" peculiarity of classical mathematics.

Indeed, from the once proven Cantor's theorem (correction 1), by
virtue of the contraposition law ("if lA —y £?' is proved then '-if? —y -^A1

is valid too") of elementary logic which, by the way, holds even in meta-
mathematical logic, ([Bourbaki 1965], [Kleene 1957]) we obtain the fol-
lowing quite surprising and epistemologically quite deep conclusion.

Corollary 1. If X is countable, then X is NOT-actually, i.e., it is po-
tentially, infinite.

Now let us repeat once more the traditional proof (above) of Cantor's
theorem.

Proof 2. Assume that X is a countable set. Then the sequence (E) of
all real numbers of X is countable as well. According to Corollary 1,
the sequence (E) will be a potentially infinite set. However, Cantor's
diagonal method is not applicable to such a potentially infinite set.
Consequently, Cantor's theorem becomes . . . unprovable. D

Thus, Cantor's theorem, in contrast to all other theorems in math-
ematics, is not provable twice and, thus, is an expendable metamath-
ematical theorem. It's, perhaps, more aptly described as a "para"-
rather than a "metà"-mathematical phenomenon.

Taking into account that the set N of finite natural numbers is count-
able by definition, we deduce from Corollary 1 the following quite un-
expected but rigorous consequence.

Corollary 2. The countable set N = {1, 2, 3 , . . . } of finite natural num-
bers is potentially infinite.

Thus, from the main Cantor's theorem itself it follows that Cantor's
Axiom as to "all sets are actual" (above) which is the only basis for all
his transfinite ordinal and cardinal constructions is wrong, i.e., accord-
ing to Poincaré, all Cantor's set theory as well as all modern "nonnaive"
axiomatic set theories are really "built on a sand" [Poincaré 1983].
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7.2. Second hidden necessary condition of Cantor's proof. The
first hidden necessary condition of Cantor's proof was quite obvious,
but it was simply never formulated explicitly and so never considered
as a necessary condition of the proof. The second necessary condition
of Cantor's proof which will now be formulated is much more subtle
and is well masked. It will be of some assist to make to appeal to
metamathematical experts. One highly regarded logician in particular,
W. Hodges, has analyzed numerous (naturally, unpublished) papers de-
voted to criticism of Cantor's diagonal proof [Hodges 1998]. Of course,
most of Hodges' arguments against Cantor's opponents are certainly
both correct and valid. However at one point his conclusion appears
somewhat doubtful. Namely, Hodges writes:

"It was surprising how many of our authors failed to realise that
to attack an argument; you must find something wrong in it." The
most common among the objections against Cantor's proof was "that
Cantor had chosen the wrong enumeration of the positive integers. His
argument only works because the positive integers are listed in such a
way that each integer has just finitely many predecessors. If he had
reordered them so that some of them came after infinitely many others,
then he would have been able to use these late comers to enumerate
some more reals, for example [the nonindexed antidiagonal real y\—
AZ]." W. Hodges objects, " . . .The existence of a different argument
that fails to reach Cantor's conclusion tells us nothing about Cantor's
argument." He goes on to restate his objection another way: "How
does anybody get into a state of mind where they persuade themselves
that you can criticise an argument by suggesting a different argument
which doesn't reach the same conclusion?"

I believe that this argumentation of W. Hodges is not correct due to
the following reasons ([Zenkin 2002a], [Zenkin 2003]).

1. In classical mathematics, if we have two deductive inferences (proofs),
say, A—^ В and A —>• C, the second one, usually, indeed "tells us noth-
ing" [to be bad—AZ] about the first one, since the mathematics is
consistent. But if we have two deductive inferences, say, A —>• В and
[A k, B] —> - iß, then the second one tells us a great deal not only
about the first inference, but also about the doubtful logical merit of
the premises set, A, itself. Unfortunately, Hodges passes over in silence
the fact that the unnamed authors' conclusion of "a different argument
that fails to reach Cantor's conclusion" contradicts and, indeed, inval-
idates the famous conclusion of "Cantor's argument."
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2. On Cantor's RAA-proof assumption UX is countable" it follows
that the set X is equivalent to any other countable set. In other
words, according to Cantor's (and modern "nonnaive" axiomatic set
theory's) definition of the equivalence relation itself, there is always a
l-l-correspondence between the set X and any other countable set as
well as any proper infinite subset of the set N. E.g., there is a 1-1-
mapping of the set X to any of such countable sets as N = {1, 2, 3 , . . . },
Ni = {2 ,3 ,4 , . . .} , N2 = {3 ,4 ,5 , . . .} , and so on, and, say, iVeven =
{2,4, 6 , . . . }, Nodd = {1, 3, 5 , . . . }, Npñme = {2, 3, 5, 7,11,13,. . . }, and
so on. This means that, according to Cantor's RAA-proof assumption,
all elements of the countable set X can be enumerated or indexed by
the elements of any of above countable sets. The prohibition of such
indexings and reindexings is a breach of the transitivity law for the
equivalence relation, and simply contradicts straightforwardly to the
known strict metamathematical definition of the equivalence relation.

3. Modern set theorists place special emphasis on the fact that accord-
ing to Cantor's RAA-proof the enumeration (E) is arbitrary. However,
this is a half of truth. Indeed, the final result of Cantor's diagonal
method (CDM) is defined only by the sequence of real numbers and
does not depend on the indices ascribed to them. Therefore, any rein-
dexing of reals in the initial enumeration (E) by means of elements of
any of the countable sets shown above, which (this reindexing) does not
change the number or order of the real numbers in the sequence (E),
will produce the same (anti)diagonal real number, y^; that is, any such
reindexing is admissible from the mathematical, algorithmical and set
theoretical points of view. Thus, in Cantor's 'arbitrary' enumeration
(E), not only the sequence of real numbers itself is arbitrary, but so
too is the indexing of these real numbers.

4. According to W. Hodges (and all modern axiomatic set theories af-
ter Cantor himself), only the set N = {1,2,3,4,5, . . .} is allowed in
indexing the real numbers of the countable set X, i.e., in the map-
ping X —У N. However, any reindexing of real numbers in (E) is
forbidden. Why?—Because only the indexing using all elements of
N = {1, 2, 3, . . . } leads to the desired Cantonan conclusion, whereas
other indexings which make use of elements of any proper infinite
(i.e., countable) subsets of N prohibit reaching Cantor's conclusion,
and therefore are strongly excluded. In other words, according to W.
Hodges, there are 'good' indexings which allow to prove Cantor's the-
orem, and there are 'bad' indexings which don't.

It is obvious that in such a circumstance modern set theory as well
as symbolic logic demands that a strict logical criterion be formulated
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in order to distinguish these two sorts of enumerations. Unfortunately,
Hodges provides no such criterion. However, if we translate his quite
emotional and purely intuitive as well as dubious metamathematical
"veto" on the "bad" enumerations that "fail to reach Cantor's con-
clusion" into the common mathematical language, we arrive at what
follows ([Zenkin 2002a], [Zenkin 2003]).

The hidden Cantor-Hodges Postulate. Within the framework of Can-
tor's diagonal proof, from the RAA-assumption UX is countable" it
follows that only such indexings of real numbers in the sequence (E)
are admissible which use all elements of the set iV = { l ,2 ,3 ,4 ,5 , . . . } .
Any other indexing which employs fewer than all natural numbers (e.g.,
any proper infinite subsets of the countable set N) is categorically for-
bidden.

I would like to emphasize here that the hidden Cantor-Hodges postu-
late is the second necessary condition of "Cantor's diagonal argument,"
since all 'bad' indexings of real numbers of the set X, according to
W. Hodges, really "fail to reach Cantor's conclusion."

Thus, a completed and explicit formulation of the statement which
Cantor proved in 1890 and which is used hitherto in modern meta-
mathematical and set-theoretical educational courses and textbooks is
actually as follows.

Cantor's Theorem (correction 2). The set X is uncountable if and
only if:

(1) the set X is actually infinite;
(2) the hidden Cantor-Hodges postulate is valid.

Now I agree absolutely with the ultimate conclusion Hodges reaches:
"there is nothing wrong with Cantor's argument" [Hodges 1998, p. 16].
Of course, this is so if and only if Cantor's theorem includes explic-
itly both of the necessary conditions of its proof acceptable to "really
working" classical mathematics.

This is very important, so it merits repeating: both conditions, (1)
and (2), are necessary, i.e., unremovable, conditions of Cantor's proof
in the sense that if either is jettisoned, Cantor's theorem becomes sim-
ply unprovable. Moreover, according to Wittgenstein, the true, "rule-
governed" sense (meaning) of Cantor's proof must be supplemented
with the two necessary conditions (1) and (2) which essentially trans-
form the traditional understanding and the final results of Cantor's
proof itself.

In a word, the first necessary condition (1) of Cantor's theorem ren-
ders it invalid. In regard to the second necessary condition (2), the
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Cantor-Hodges hidden postulate, it is simply a teleological assertion
(only 'good' indexings are permitted, since only these allow us "to
reach a desired Cantor's conclusion") which has no relation to mathe-
matics and is an issue for what has been called "paramathematics."

7.2.1. Why neither Kronecker nor Poincaré could disprove mathemat-
ically the ten philosophical strings of Cantor's proof? Now we have
an opportunity to answer a historical (and psychological) question of
considerable importance, viz. why, for example, the greatest mathe-
maticians of the nineteenth and twentieth centuries, such as Kronecker,
Poincaré and others, who knew well Cantor's "Study on Transfinitum"
and categorically rejected the actual infinity usage in mathematics (see
the Introduction), could not mathematically prove the inconsistency
of the main statement of the "Study"—Cantor's theorem on the un-
countability of the continuum based upon the actual infinity usage?
[Zenkin 2002a].

The answer would appear to be as follows. In mathematics, the
"suspicious" theorem may be disproved in at least two ways: 1) if it
is possible to detect an error in the proof itself of the theorem (as
W. Hodges demands, see above), or 2) if it is possible to prove that
even one necessary condition of the proof is logically incorrect (false,
contradictory or unrealizable). In view of the second possibility we
would do well to reconsider Hodges' statement that "It was surprising
how many of our authors [criticizing Cantor—AZ] failed to realise that
to attack an argument, you must find something wrong in it." Indeed,
it sounds very strange, since really working mathematicians know full
well that in mathematics any proof is to be considered absurd not only
when it contains "something wrong," but also when even one necessary
condition of the "proof" is absurd.

Apparently, Cantor's diagonal procedure itself contains no 'deduc-
tive,' formal mistakes—otherwise really working mathematicians would
have detected such errors a long time ago. That is why the first, com-
mon way to disprove Cantor's proof turned out not too convincing and
effective. So, only the second way remained—to prove that "even one
necessary condition of the proof is absurd." But here we come across
a rather strange situation in all visible history of mathematics: one of
the most influential metamathematical and set-theoretical theorems,
Cantor's theorem on the uncountability of the continuum, never made
explicit the necessary conditions of its own proof (see above). The
last allows us to explain why neither Kronecker nor Poincaré, nor any
other of Cantor's opponents was able to give a mathematical refuta-
tion of the ten philosophical strings of Cantor's diagonal proof: really,
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it's impossible to prove the absurdity of what does not exist at all!
And what is more, no mathematician, even most ingenious one, sim-
ply could ever come to mind even a thought itself that it's possible
during hundred years "to teach other people" (Hodges) how to for-
mulate and prove Cantor's, ostensibly, mathematical theorem, while
omitting . . . the necessary conditions of its proof. From the 'really
working' mathematics as well as Aristotle's logic point of view, it is
a scandalous nonsense and, to borrow from the wisdom of Brouwer,
really represents a "pathological incident in history of mathematics"
[Fraenkel and Bar-Hillel 1958]. Such a situation has exerted a deleteri-
ous influence on progress in our understanding of mathematical founda-
tions and is in fact "very harmful and has grave scientific, pedagogical,
and social consequences," according to the opinion of the outstanding
modern mathematician and educator Prof. V. I. Arnold ([Arnold 1999],
[Zenkin 2000d], [Zenkin 2002b]).

8. FOUR ODD PECULIARITIES ASSOCIATED WITH CANTOR'S

TRANSFINITE ORDINAL NUMBERS.

We next consider several aspects of the second half of Cantor's
"Study on Transfinitum"—his famous theory of the transfinite ordi-
nal numbers.

8.1. Arithmetization of names or a child game "draw, snip
off, and glue together." Godei invented a way of numbering formal
statements, i.e., he replaced formulas by natural numbers, arithme-
tized all "quite rich" formal systems ([Kleene 1957], [Zenkin 2002c]),
and then produced his famous "negative" metamathematical results
(incompleteness, unprovability of consistency, etc.). Now we shall show
that Cantor, anticipating Godei, successfully used a similar idea in cre-
ating his famous theory of transfinite ordinal numbers ([Zenkin 1997a],
[Zenkin 1997b].

Cantor begins with an argument for the legitimacy of the actualiza-
tion of the infinite series (NN) of finite natural numbers. Here we stick
close to his original procedure ([Cantor 1914], [Cantor 1985]) (almost
verbatim) : it is well known that the number of finite natural numbers
in the series (NN) is infinite, and therefore [according to Aristotle—
AZ] there is no last maximal number in (NN) . . . ; however contra-
dictory it may seem (it is really very much contradictory, as Cantor
himself well understood!), there is in fact no absurdity ("The essence
of ... mathematics is its freedom" I—So any fantasy is admissible!) in
denoting the series (NN) as a whole using a symbol (or name), say,
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'omega' (further: uj, for short), calling the name 'a;' an integer and
then going on to count:

(Cl) to,to + 1 , t o + 2 , t o + 3 , . . . ,

in the complete conformity with . . . the Aristotle-Peano axiom: "if a
'thing' is [called—AZ] integer then the 'thing' + 1 is integer too" (for
any 'thing' independently of a "real nature" of the 'thing' and what
we think of the 'thing').

From a formal point of view, Cantor's "transfinite" series (Cl) is
the same series (NN) with the new name 'a;' instead of the traditional
name '0' for zero:

(NN) 0,0 + 1,0 + 2,0 + 3, . . . ,0 + n , . . .

(Cl) w,u) + l , u ) + 2,u) + 3 , . . . , u ) + n , . . .

It is reasonably obvious that if we prefer common names in common
Latin alphabet, say 'tankard' (according to Hubert, if say in Euclidian
system of axioms to replace the words 'point,' 'line,' and 'plane' by
the words 'table,' 'chair,' and 'tankard' then nothing will be changed
in Euclid's geometry, see [Bourbaki 1965]), call this name 'tankard' an
integer, then, according to Peano's axiom in the form "if a 'tankard'
is integer then the 'tankard' + 1 is integer too," we can generate the
series,

tankard, tankard + 1, tankard + 2, tankard + 3 , . . . , tankard + n,...,

the set-theoretical semantics of which will be identical to the number-
theoretical semantics of the series (NN) and (Cl). However, since
Cantor creates a "transfinite stairway to Heaven" [Cantor 1914], a
countable set of sensible (as well as meaningless) finite names which
can be produced in the finite Latin alphabet will be exhausted quite
soon owing to the mere countability of the names set. To avoid the last
difficulty Cantor makes use of an ingenious innovation, viz., in order
to generate an admittedly unlimited number of new names he uses as
names the notation for the separate components (summands) of the
common algebraic polynomial,

P(x) = a0 + a±x + a2x
2 + • • • + aax

a + . . . ,

with integer coefficients and exponents written in a nonpositional no-
tational system, i.e., the exponents a in P(x) are presented in the same
polynomial form if for a fixed integer x the exponent a becomes greater
than x.

Now, replacing the name ixi of the traditional mathematical variable
by the Greek name 'a;,' we get the following familiar, "well-ordered"
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0, 0 + 1 , 0 + 2, 0 + 3, . . .
U!, Ul + 1, CO + 2, U! + 3,

2u), 2u) + l, 2u) + 2, 2a;+ 3, . . .
3a;, 3a;+ 1, 3a; + 2, 3a; + 3, . . .

nco, nco + 1, nco + 2, nu> + 3, . . .

to2, co2 + l, to2+ 2, a;2 + 3, . . .

шп,

and so on

TABLE 2. The only series (NN) oí finite natural num-
bers rewritten with different names for zero.

series of "quasi-arithmetical" names:

(Ord) u!, 2a;, 3a;,..., nuo,..., a;2,..., шп,..., шш,..., and so on,

which consists in the names of Cantor's "transfinite ordinals of a second
kind" [Cantor 1914]. Using this names, we may continue the process
of the "transfinite" recursion (see Table 2).

Now, if we "snip off" the strings of the Table 2 and then successively
"glue" them together into one string, we arrive at the main object of
Cantor's theory of the transfinite ordinals up to Cantor's famous count-
able name 'e 0 ' ([Hubert 1948], [Cantor 1914], [Cantor 1985],
[Kleene 1957]):

(C2) 1,2,3, ...,o;,a; + l,a; + 2,a; + 3 , . . . ,

2a;, 2a; + 1,2a;+ 2, 2a;+ 3 , . . . ,

3a;, 3a; + 1, 3a; + 2, 3a; + 3, . . . ,

Ul ,. . . ,U1 ,. . . ,U1 , . . . ,U1 {— £ 0 )

It is obvious that now the same senseless procedure can be carried
out with this new name So for zero in (NN). Then the same child's
game can be repeated with the obvious new names S\, s2, s3, . . . , ew,
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. . . , ee, . . . , and so on, generated by the same 'genetic algorithm' of
the series (Ord).

Thus, if we will believe not in the speculative Cantor's statements
about a high transfinite nature of the name 'a;' and symbolic construc-
tions of the (C2) type, but, according to Wittgenstein, in the real,
mathematical, "rule-governed" usage of the name 'a;' in such sym-
bolic constructions, then we shall see that the true mathematical sense
of Cantor's series (C2) of "transfinite" ordinals is exhausted by the
mathematical sense of the Aristotle-Peano axiom "if a 'thing' is inte-
ger then the 'thing' + 1 is also an integer." As has been remarked
above, this axiom tells nothing as to a real nature of these 'things.'
Therefore nothing we can say as to the true nature of these transfinite
'things' (whether they are "in reality" finite/infinite, actual/potential,
consistent/inconsistent, big/small, white/black, etc.) has any relation
to mathematics. As for Cantor's series (C2) of 'transfinite ordinals,'
it is, unfortunately, a senseless unlimited reiteration of the same se-
ries (NN) of the common finite natural numbers with new symbolic
names for common zero '0' at each step of this cloning process, having
a vacuous mathematical semantics and ontology. In a word, Cantor's
"transfinite stairway to Heaven" is in reality a version of a well-known
old-fashioned child's game: "Draw, Snip off, and Glue together."

8.2. Whether Cantor was really in need to actualize infinity
in order to tell about 'transfinity'? According to Cantor, 'omega'
means that "the sequence (NN) contains all its elements, i.e., it is a
completed, constant, invariable, actually infinite set" ([Cantor 1914],
[Cantor 1985]) otherwise it would be inadmissible at all to call the
'omega' a number. As is known Cantor put a lot of work in order
to convince mathematicians of a legitimacy of such a doubtful step.
However what would happen if Cantor's 'omega' would, 'in reality,' de-
note the sequence (NN) as something potential, i.e., as an "incomplete,
variable," growing sequence whose elements are, according to Aristotle,
"always finite, but ever other and other"? I believe nothing, since, as
was shown above, in order to work Cantor's "transfinite" series (C2)
it is sufficient to call any symbol an integer—and further in reality
Peano begins "to work," not Cantor. Following Wittgenstein, the real,
"rule-governed" usage of all Cantor's 'omegas,' 'epsilons,' etc. shows
that in order to overstep the potential infinity of the classical series
(NN) of the common natural numbers and produce Cantor's "transfi-
nite" construction (C2) it is, contrary to Cantor, absolutely irrelevant
to whether the infinite series (NN), (Cl) , (C2), and so on are actual.
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Thus, Cantor wasted words arguing in favor of the actualization of
the infinite series (NN), but what Cantor was really in need in order
to construct his transfinite ordinals in (C2) is only the immutability
(i.e., indeed the real actuality) of these names and symbols themselves.
However the last is a problem of a syntax of the symbolic 'game' above,
but not of a mathematics.

8.3. When finite and transfinite are a matter of taste. There
is another interesting aspect of Cantor's series (C2) of the transfinite
ordinals ([Cantor 1914], [Cantor 1985], [Zenkin 1997a], [Zenkin 1997f],
[Zenkin 1997g]).

Let us rewrite the common series (NN) of the finite natural num-
bers which, according to Kronecker, were created by the Lord, in the
following quite ancient and primitive, but natural enough, additive, for
the sake of simplicity decimal, but nonpositional notation:

(C3) 1, 2, 3 , . . . , 10,10 + 1,10 + 2,10 + 3 , . . . ,

10 + 10,10 + 10 + 1,10 + 10 + 2,10 + 10 + 3, . . . ,

10 + 10 + 10,10 + 10 + 10 + 1,10 + 10 + 10 + 2,10 + 10 + 10 + 3 , . . . ,

In order to reduce the length of (C3), we shall use common symbols
for multiplication and the raising to a power as follows: 10 + 10 —У 2 • 10,
10 + 10 + 10 ->• 3 • 10, etc., and, for example, 10 + 10 + 10 + 10 + 10 +
10 + 10 + 10 + 10 + 10 ->• 102, etc., and so on. The series (C3) then
becomes:

(C4) 1, 2, 3 , . . . , 10,10 + 1,10 + 2,10 + 3 , . . . ,

2 • 10, 2 • 10 + 1, 2 • 10 + 2, 2 • 10 + 3, . . . ,

3 • 10, 3 • 10 + 1, 3 • 10 + 2, 3 • 10 + 3, . . . ,

But it is obvious that the series of the finite natural numbers—in the
form (NN) or in the new form (C4), which is the same thing—can be
written in any other number system, and, as is commonly understood,
neither the quantity of its elements, nor the order of these elements
will not be changed. Therefore, we shall choose an arbitrary symbol,
for example, the Latin symbol 'w,' then we shall call this symbol 'w'
an integer, and lastly we shall rewrite the series (C4) in the arbitrary
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w-adic number system notation as follows:

(C5) 1, 2, 3 , . . . , w, w + 1, w + 2, w + 3 , . . . ,

2w, 2w + 1, 2w + 2, 2w + 3 , . . . ,

3w, 3w + 1, 3w + 2, 3w + 3 , . . . ,

Underscore once again that since until now we have nowhere changed
either the quantity or the order of natural numbers in the initial series
(NN), it can be asserted that the series (C5) is the same initial series
(NN) in the sense that the series (C5) contains the same finite natural
numbers and in the same order as the series (NN), though written in
the w-adic number system.

If we now take any other symbolic name instead of the Latin symbolic
name 'w' in the series (C5), e.g., Greek 'a, ' or, '/?,' or, '7, ' or, '#,' etc.,
then the number of elements and their order in the series (C5) will not
be changed either. Naturally, if you, carrying out the shown procedure,
will reach (if any) the last letter of the Greek alphabet, you will obtain
the record of the series (C5), i.e., of the initial series (NN), in the
1-1-form of Cantor's series (C2).

Thus, we have proved by means of the constructive and effective pro-
cess, that the series (NN) in the form (C5) and Cantor's 'transfinite'
series (C2) are formally identical. Since the number and the order
of all the elements in these two series are the same, they are simi-
lar, as mathematicians say, and, consequently, an element-to-element,
symbol-to-symbol 1-1-correspondence exists between the series (NN)
and (C2). Consequently, the series (NN) and (C2) being isomorphic
are indistinguishable from the mathematical point of view, but any
distinction of isomorphic structures, in particular, in our subjective
interpretation of the names '10,' 'w,' 'a;,' and ' . . . , ' are neither essen-
tial nor interesting from a mathematical point of view ([Hubert 1948],
[Bourbaki 1965]).

From a Wittgensteinian perspective "rule-governed" usage associ-
ated with the name 'w' in (C5), it is a matter of taste whether to
consider (or to think of) the series (C5) either as a symbolic model
of the potentially infinite series (NN) of the common finite natural
numbers or as a symbolic model of the actually infinite series (C2) of
Cantor's 'transfinite1 ordinals.

By the way, as is known, Cantor's set of 'transfinite' ordinals up
to the e0 (C2) is countable, so there is little wonder that there is a
1-1-correspondence between (C2) and (NN). Moreover, there are a
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number of such different correspondences [Alexandrov 1948], but hith-
erto all such correspondences changed the natural order of the nat-
ural numbers in the series (NN). From this point of view, our 1-1-
correspondence between the series (NN) in the form (C4) and Cantor's
series (C2) is unique in the sense that this 1-1-correspondence retains
the natural order of natural numbers in the series (NN), i.e., the 1-1-
correspondence is the homothety or similarity relation. That is made
for the first time.

8.3.1. Remark. Noncommutative version of Peano's arithmetic. It is
easy to show that an isomorphism obtains not only between the series
of the common finite natural numbers (NN) of the form (C5) and Can-
tor's transfinite ordinals (C2), but also between Cantor's "arithmetic"
of transfinite ordinals and Peano's arithmetic qualified somewhat as
follows. Consider the presentation of the series (NN) in the nonpo-
sitional w-adic form (C5), and introduce the following two additional
(to the classical Peano's axiom system) axioms defining Cantor-like
noncommutativity of the addition operation of common finite natural
numbers.

Axiom 7. For any n < w, n + w = w. Consequently: n + w = w ф w+n.

Using 'w' instead of 'a;' in (Ord), introduce the more general

Axiom 8. If for any names a and ß of the series (Ord) a < ß, then

a + ß = ß.
As a result we shall have a new, special, noncommutative Peano

"arithmetic" of common finite natural numbers where, for example, for
a fixed radix w = 10: 1 + 10 = 10, 9+10 = 10, i.e., n+10 = 10 ф 10+n,
and n + 102 = 102, n • 102 + 103 = 103, and so on (see Cantor's theory
of transfinite ordinals in [Cantor 1914], [Kleene 1957]).

It is uncertain where such a mutilated, noncommutative "arithmetic"
of finite numbers could be applied in mathematics, but it certainly
would be useful in the case of certain illegal financial activities: $n +
$w = $w, where the $n vanishes (from the Revenue Board), though
the value itself of that $n may be quite sizeable.

8.3.2. Remark. Proof of the consistency of Cantor's 'theory' of trans-
finite ordinals. The isomorphism of (NN) and (C2) in the form (C5)
proves the obvious relative consistency of Cantor's "theory" of trans-
finite ordinal numbers: the last is certainly consistent if and only if
Peano's arithmetic is consistent. In other words, since all mathematics
used in Cantor's theory of transfinite ordinals is exhausted by the shown
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Aristotle-Peano axiom, Cantor's "theory" of transfinite ordinals simply
can't be inconsistent. By the way, the consistency of Cantor's "theory"
of transfinite ordinals is proved here for the first time. Though, as it's
easy to see, the proven consistency of the "theory" does not guarantee
that it has a mathematical sense.

The proven consistency (conditional though) of Cantor's ordinals
explains, in particular, why such a deep mathematician as Kronecker
could not disprove mathematically a quite obvious inanity of Cantor's
theory of transfinite ordinals.

8.3.3. Remark. Natural solution of Burali-Forti 's paradox. According
to the Burali-Forti 's paradox, the ordinal of all transfinite ordinals leads
to a contradiction. In order to avoid the contradiction, Cantor's "naive"
and modern "nonnaive" set theories offer a quite questionable way out:
they declare, as usual, that such a contradictory 'thing' as the 'ordinal
of all ordinals' simply does not exist ([Cantor 1914], [Cantor 1985],
[Kleene 1967]), i.e., every transfinite ordinal is existent, i.e., actual,
but the 'ordinal of all ordinals' is nonexistent, i.e., unattainable, i.e.,
potential.

This is of little consequence, however, since following the traditional
Cantor's approach (see his argumentation as to the 'a;' introduction
and the further construction of the series (C2) , above), we can always
denote the contradictory 'ordinal number of all transfinite ordinals' a
new name which so far has not been used in Cantor's set theory, say,
'alpha' ('«'), call this name 'a ' a least transtransfinite integer that is
greater than any 'common' iransfinite Cantor's ordinals and go on:

a, a + 1 , a + 2, . . . , 2a, 2a + 1 , 2a + 2, . . . ,

a2,..., aa,..., and so on, (akin to (C2))

of course, following Cantor's famous slogan "The essence of . . . math-
ematics is in its freedom!" and the Aristotle-Peano axiom "if a thing 'a '
is integer then the thing ' a ' + l is integer too." And so on ([Zenkin 1997a],
[Zenkin 1997b]).

In one word, "the set theory," as P.Vopenka concludes rightly, "whose
energies were directed to the actualization of potential infinity turned
out not to be able to eliminate the potentiality, but could only remove
it into a more far sphere" [Vopenka 1983].

8.4. Whether Cantor's ш is an integer? What does it mean
to apply ' + 1 ' to the name 'a;'? According to Cantor, ш is an in-
teger and that is why the operation ' + Г , strictly defined (before Can-
tor) only for the finite numbers, is considered applicable to u> within
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the framework of Cantor's "naive" as well as modern "nonnaive" set
theory. Cantor and modern Cantorians, when they want to defend
acceptance of unusual, contradicting normal human's intuition, prop-
erties and the frequently quite extravagant peculiarities of transfinite
objects, typically accentuate the inadmissibility of transferring proper-
ties that are defined for the finite numbers to the transfinite numbers
([Cantor 1914], [Cantor 1985], [Kleene 1957], [Hodges 1998]).

Let us consider how this important methodological demand of mod-
ern metamathematics and axiomatic set theories is maintained in meta-
mathematical practice.

Return to Cantor's diagonal proof, and add to Cantor's 'diagonal
rule' (R) the following rule (in a usual computer notation):

(R3) integer С; С := 1; for any i > 1 [С := С + 1];

which is defined on and applied to the natural indexes of the real
numbers in the enumeration (E), and is realized simultaneously with
and (step-by-step) parallel to Cantor's rule (R) at each step i. In
other words, while Cantor creates his new real number y± according
to the rule (R), we shall at the same time create a new integer С in
accordance with the rule (R3). Since the parameter У is the same
for both rules, it is obvious that the situation when, say, Cantor has
finished the process of creating his new real number уъ but the process
of creating our new integer С so far is not completed (and vice versa)
is impossible.

Therefore only the following two cases are of interest.

(1) If the ith step of Cantor's diagonal process is finite, say, i = n,
then Cantor's (anti)diagonal real number y^ created towards
the ith step by the rule (R) is a finite binary sequence,

Vi = O.2/n2/i22/i3---2/in,

which, of course, differs from each oí the first n real numbers in
the enumeration (E), but itself is not a real number, since the
finite binary sequence with the length n defines a finite subseg-
ment of the initial segment [0,1] with the finite length l/(2n),
i.e., the sequence defines not an only individual real number,
but a whole infinite set of real numbers which, according to
Cantor, has the same cardinality as that of the initial segment
[0,1]. Simultaneously, we arrive at С = n + 1 which is a finite
natural number greater (and, consequently, also different from)
each of the indexes of the same first n real numbers in (E):
n + 1 > 1,2,3, ...,n.
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(2) If the creation of Cantor's (anti)diagonal real number y^ is com-
pleted, then so too is the creation of the new integer C; and its
value can't be finite (otherwise go to the case (1)), and the ques-
tion naturally arises: what is the С in such a case? Since that С
was produced by means of the application of the operation ' + Г
only to finite natural numbers (positive integers), it must be an
integer, but it can't be finite. So, after Cantor's diagonal algo-
rithm stops its work, i.e., arrives at its 'halting' state, the integer
С becomes a minimal 'integer' which is greater than (and, con-
sequently, different from) any finite natural number. According
to Cantor's own definition, the last is a minimal transfinite in-
teger, i.e., it is his famous ui ([Cantor 1914], [Cantor 1985]).

Thus, the application of the non-Cantorian 'diagonal rule' (R3) to
the indexes of the real numbers of the enumeration (E) produces a
rigorous proof (anyway, of the same kind and level of the rigor as
Cantor's proof does that) of the following quite interesting conditional
statement.

Theorem 1. If the application of Cantor's 'diagonal rule' (R) to the
enumeration (E) of real numbers generates a new real number as an
individual mathematical object, then the simultaneous application of
the non Cantonan 'diagonal rule' (R3) to the indexes of the same
real numbers of the same enumeration (E) generates Cantor's mini-
mal transfinite integer to, or, shortly, IF Cantor's (anti)diagonal real
number exists THEN in the same sense Cantor's ui exists.

8.4.1. Remark. Rigorous proof of the existence of Cantor's 'omega.'
It is obvious that Theorem 1 gives much more rigorous (conditional
though) proof of the u> existence than the original Cantor's speculative
argumentation cited above in §8.1. Different ways in proving Theo-
rem 1, based on a cognitive semantical visualization of the Continuum
Problem and a mirror-like isomorphism of the real numbers and nat-
ural numbers graphic representations, are presented and discussed in
([Zenkin 1997a], [Zenkin 1999], [Zenkin 1997d], [Zenkin 1998]).

Now, taking into account 1) that the process of the construction
of the binary sequence of digits of Cantor's (anti)diagonal real num-
bers î/i is in fact the infinite process of the dichotomy of the segment
[0,1] producing a point as its final result (provided by Cantor's ax-
iom about a system of imbedded segments with the lengths tending to
zero [Fichtengolz 1958]); 2) that a point of a segment is an indivisible
'thing,' according to Euclid's axiomatic geometry, i.e., it is a 'thing'
to which the division operation ' /2 ' is simply not applicable, from the
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Process
descriptions
Initial term
Operation

Common term
Iteration

"Final" result
Further applicability

of the operation

Process 1
Generation of the Series

of Natural Numbers
1

Ч-Г
n

n —> n + 1
Cantor's u!

w + l,w + 2,w + 3,...?

Process 2
Dichotomy

of the segment [0,1]
Li = |[0,l]| = l

'/2'
Ln = l/(2"" i )
-kn/2 —> Ln+i

LQO = 0 is a point

lLoo/2i has no sense

modern "really working" mathematics point of view; and 3) that there
is the obvious formal isomorphism between the processes of generating
the natural numbers, on the one hand, and the infinite dichotomy of
the segment [0,1], on the other hand (see Table 3), we arrive at the
following conditional statement.

Corollary 1. If the application of the common operation '/2' to a com-
mon point of a segment has a mathematical sense, then the application
of the addition operation ' + 1 ' to Cantor's minimal transfinite 'integer'
u) has that same sense.

8.4.2. Remark. A professional nonstandard set theorist might object:
within the framework of modern nonstandard analysis, a common Eu-
clidian point is a finite segment, but only a very-very small, i.e., trans-
transfinite, one and such a 'point' is divisible as usual finite segments
but into smaller transfinite parts [Uspensky 1987]. I would like to em-
phasize that so far we have here considered foundations of Cantor's
"naive" set theory which is far removed from the later inventions of
nonstandard analysis. In fact, some of such problems of the nonstan-
dard analysis were considered earlier in [Zenkin 1999].

If we wish to place our trust not in Cantonan verbal directives, but in
their real, according to Wittgenstein, "rule-governed" usage within the
framework of real metamathematical proofs, we must agree that the
application of the operation ' + Г to Cantor's 'thing' ш has the same
"mathematical" sense as the application of the operation '/2' to the
common Euclidian 'individual' geometrical point.

9. A FUNNY DEVELOPING meÌClMATHEMATICAL GAME FOR TWO

HONEST TRICKSTERS.

Wittgenstein was very skeptical of Cantor's diagonal argument.



72 A. A. ZENKIN

Cantor's proof was suspected of being a senseless metamathematical
game (see [Wittgenstein 1956], [Hodges 1998]): a man tries day in, day
out to put all irrational numbers into a series; when all reals are put
into a series and enumerated and this "idiotical work" is finally ended,
a trickster (Cantor's diagonal procedure) suddenly appears and says
to the man: "Of course, you have just enumerated all reals and you
have utilized all natural numbers, however, please, here is a new real,
yet you lack even one spare natural number in order to enumerate this
single real. Consequently, a number of reals is greater than a number
of natural numbers."

Consider now the following natural continuation of this, according
to Wittgenstein, "daft [metamathematical] activity" [Zenkin 2002a].

So, we already have one (Cantor's) trickster (hereafter: a Cheat 1)
who is able to do the following metamathematical conjuring trick: Af-
ter^.) a given enumeration (E) has been presented, Cheat 1 shows (gen-
erates, defines, invents, takes out of his sleeve, etc.) a new (anti)diagonal
Cantor real yi which is different from every real of the enumeration (E).

Now we introduce a second trickster (hereafter: a Cheat 2) who is
able to change the countable set of indexes {1,2 ,3 , . . .} in the given
enumeration (E) to another countable set of indexes, say {2, 3 , 4 , . . . } .
Naturally without any modifying of the number and order of the reals
themselves in the initial sequence (E).

Since the final result of applying Cantor's diagonal algorithm de-
pends only upon the number and order of the reals in (E) and does
not depends upon any indexing of these reals, Cheat 1 (and all his
admirers) simply has not algorithmical tools to observe the artful al-
gorithmical operation of the Cheat 2.

However, I must especially emphasize here that the both of our
Cheats are absolutely honest in the sense that they do not violate
any law of any logic: simply Cheat 1 plays by the rule based upon
the property of actuality of the actually infinite sequence (E) or, what
amounts to the same thing, upon Cantor's Axiom; whereas Cheat 2
plays by the rule based upon the property of the infinity of the same
actually infinite sequence (E), or, more precisely, upon the transitivity
law of the equivalence relation (between all countable sets).

Consider the following purely metamathematical game and its im-
plications for Cantor.

The starting state, in accordance with Cantor's diagonal proof, is as
follows.

"A given arbitrary enumeration

(E) xi,x2,x3...
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contains all real numbers of X.v

Step 1: Our Cheat 2 with stealth absconds with a single index,
say '1, ' and reindexes the sequence (E) to form the sequence:

(E*) x2,x3,x4,...,

so that the sequence (E*) contains the same reals in the same
order: x2 of (E*) is equal to Xi of (E), x3 of (E*) is equal to
x2 of (E), and so on.

Step 2: Cheat 1, using (E) or, what is the same, (E*), creates a
new real number, say y±, and makes the following claim: "So,
now you lack even one free natural number in order to index my
new real number, y±. Consequently, the number of all my real
numbers is greater than the number of all your natural numbers,
i.e., scientifically speaking, the cardinality of X is greater than
the cardinality of N."

Step 3: Cheat 1, again openly, takes index 'Г from his sleeve
and claims: "Your card is covered; here is a free, spare natural
number to index your nonindexed real number y\.n

Step 4: A game referee indexes the new (Cantor's) real number
y i of Cheat 1 using the number (actually the numeral) 'Г of
Cheat 2, puts it in its natural first place within the given enu-
meration (E*) as follows:

(E.I) уъх2,х3,х4...

and claims: "Since Cheat 1 has no new reals at this moment,
the enumeration (E.I) now contains all the real numbers of X.
Draw game: 0:0!"—Consequently, the number of reals is not
greater than the number of natural numbers.

It is obvious that now our Cheats are free to return to Step 1 and
repeat the steps of the game. Then again. And so on to infinity.

Consequently, and this is shown in [Zenkin 2000a], [Zenkin 2001],
[Zenkin 1997a], [Zenkin 1997b], [Zenkin 1997c], [Zenkin 2000c],
[Zenkin and Zenkin 2002]), we have the following potentially infinite
"reasoning" (here В = "an enumeration contains all real numbers of
Xn):

(L3) B-)-^B-)-B-)-^B-)-B-)-^B-)-B-)-. . .

In [Zenkin 2000b], [Zenkin 1997e], the necessary and sufficient con-
ditions of paradoxicality as a whole are formulated, and by means of the
classical model theory it has been proven rigorously that the true nature
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of the "Liar" and similar paradoxes is described not by the traditional
finite form (L) but by the following potentially infinite "reasoning" :

( L 4 ) A —y - i A —у A —у - i A —у A —у - i A —>• A — > • . . .

The formal coincidence of infinite paradoxical "reasonings" (L3) and
(L4) is no mere accident. It shows that Cantor's diagonal proof con-
tains the infinite fragment (L3) which is in fact a new "Liar"-type set
theoretic paradox (a paradox for both "naive" and "nonnaive" set the-
ory). Until the potentially infinite "reasoning" of (L3) is completed,
Cantor's conclusion "Consequently, the assumption that X is count-
able is false" is from the standpoint of classical logic invalid, since the
"conclusion" contains a fatal, very insidious logic error called "jump to
a (very desired) conclusion." Since the potentially infinite "reasoning"
(L3), according to Aristotle, can never be completed, Cantor's diag-
onal proof is incapable of completion and, consequently, the theorem
concerning the uncountability of the continuum is simply unprovable
from the standpoint, that is, of classical logic.

10. P R O O F OF ARISTOTLE'S THESIS "Infinitum Actu Non Datur."

As said above, according to Aristotle's definition of 'potentially in-
finity,' ".. .the infinite exists through one thing being taken after an-
other, what is taken always being finite, but ever other and other"
[Aristotle] (cited by A. W. Moore [Moore 1993]).

What is important about the definition is that any potentially infi-
nite set (process) is always presented in reality as finite, that is, as a
finite approximation to an infinite "ideal." All really working mathe-
matics is based on this definition with no real problem.

However, Cantor's proof allows us to generalize Aristotle's definition
of 'potentially infinite' in the following way [Zenkin 2000a].

At every step in the process (L3) we have an actually infinite (E)-
type sequence of consisting entirely of reals. The application of Can-
tor's diagonal rule (R) to the sequence, explicitly acknowledging the
actuality of the sequence, generates a new real differing from all pre-
existing reals. Then, using the infinity of the same sequence, we can
now generate a new sequence which includes the preceding one as well
as this new Cantonan (anti)diagonal real, i.e., we get the new sequence
which again contains all reals. In other words, originating from the ini-
tial Cantor's enumeration (E), the process (L3) proves that no actually
infinite set of reals can contain all reals, i.e., it refutes the notion that
the property itself of the set X of being 'actual' in Cantor's sense,
according to which the actual set contains all its elements.
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It allows us to generalize Aristotle's definition of 'potential infinity'
to the case where its 'thing' is not finite in the following manner:

. . . the infinite [of the set of all reals (continuum)] ex-
ists through one thing [a sequence of all reals plus new
Cantor's real] being taken one after another [a preced-
ing sequence of all reals], what is taken being always
[actually infinite], but ever other and other.

In other words, even if we assume that the set X of all reals is actually
infinite, i.e., comprises all its elements, the process (L3) proves by
construction that the set X can't contain all reals, i.e., the set X is
ultimately a potentially infinite set.

Thus, the Aristotle's famous thesis "Infinitum Actu Non Datur"
refers not only to finite 'things,' but also to actually infinite 'things'
pointing out to a similarity of the properties 'to be finite' and 'to be
actual' within the framework of Cantor's diagonal proof.

Indeed, there is another important aspect of the process (L3), viz.
that at every step Cantor, explicitly using the property 'to be actual1

attributed to an actually infinite sequence, constructs a new real and
proves not-B. Now we, explicitly using the property 'to be infinite1 of
the same actually infinite sequence, can construct a new sequence of
reals and prove B. From the classical logic point of view this means
that the notions 'actual' and 'infinite' are contradictory. Yet in fact
the only notion which is contradictory to 'infinite' always was and re-
mains now the notion of the 'finite.' Consequently, from a logical point
of view, the notions 'actual' and 'finite' are algorithmically identical.
The last means that within the framework of Cantor's diagonal proof
the 'actual infinite' signifies in (metamathematical) practice a 'finite
infinite.' In short, the notion 'actual infinity' is, within the framework
of Cantor's diagonal proof, a self-contradictory notion and therefore its
algorithmical usage is, according to Gauß, inadmissible in mathematics.

11. MAIN CONCLUSIONS: W H E T H E R THE LORD EXISTS IN

CANTOR'S TRANSFINITE 'PARADISE'?

1. The traditional Cantor's theorem regarding the uncountability of
the continuum had never two necessary conditions of its proof formu-
lated in an explicit form. In classical mathematics such a situation
is considered as absurd and simply inadmissible. However, just this
quite scandal fact explains why Kronecker, Poincaré and many other
outstanding mathematicians could not "physically" disprove Cantor's
theorem in a straightforward mathematical way: it is impossible to
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prove a mathematical failure of what does not exist at all. The expli-
cation of these two conditions and their logical analysis has shown that
Cantor's diagonal proof is invalid from the point of view of classical
logic and 'really working' mathematics.

2. It has been proved that the notion of 'actual infinity' is self-contradictory,
i.e., the set-theoretical properties 'to be actual' and 'to be finite' are
algorithmically indistinguishable, within the framework of Cantor's di-
agonal proof

3. It has been proved that Cantor's 'theory' of the cardinal transfinite
'integers,' based on Cantor's axiom which states that "all infinite sets
are actual" and his theorem on the uncountability of continuum, is
invalid, and therefore Cantor's conception itself stating an 'existence'
of actually infinite sets differing in their cardinalities and his famous
'a/ep/i'atic series of increasing transfinite cardinals have no sense from
the point of view of classical logic and 'really working' mathematics.

4. It has been proved that Cantor's 'theory' of the ordinal transfinite
'integers' is conditionally consistent, i.e., if and only if Peano's axiomat-
ics are consistent, but that the mathematical sense of this 'theory'
is exhausted by the Aristotle-Peano inductive definition of the com-
mon series (NN) of the common finite natural numbers, and it's quite
doubtful that Cantor's w-adic series (C2) of the transfinite ordinals
indeed leads us "unto Heaven."

5. The great intuitive scientific insight of Aristotle, Gauß, Kronecker,
Cauchy, Poincaré, and many other outstanding logicians and mathe-
maticians, "Infinitum Actu Non Datur" is rigorously proved here for
the first time.

6. It is obvious that the disproof of Cantor's theorem on the uncount-
ability of continuum and a posterior unavoidable rejection from the
set-theoretical 'distinguishing' of infinite sets by their cardinalities will
essentially change the traditional logical and methodological paradigms
of modern mathematics and philosophy of infinity, and open a real way
to resolve central problems connected with Great Crises I, II, and III
in foundations of mathematics.

7. Every metamathematician and set theorist, from a child's age, is fa-
miliar with the 'bold' and 'proud' challenge sent by Hubert (to whom?):
"No one shall expel us from the paradise which Cantor has created for
us!" [Hubert 1948].

However, I believe that many of them also remember the following,
quite enlightening Story (Holy Bible, "Genesis," Chapter 11).
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And the whole earth was of one language, and of one
speech. [... ]

And it came to pass, as they journeyed from the east,
that they found a plain in the land of Shi'-nar; and they
dwelt there.

And they said one to another, Go to, let us make brick,
and burn them throughly. And they had brick for stone,
and slime had they for morter.

And they said, Go to, let us build us a city and a tower,
whose top may reach unto heaven; and let us make us a
name, lest we be scattered abroad upon the face of the
whole earth.

And the Lord came down to see the city and the tower,
which the children of men builded.

And the Lord said, Behold, the people is one, and they
have all one language; and they begin to do: and now
nothing will be restrained from them, which they have
imagined to do.

As is well known, this pretentious, ambitious building of Babel 1
"unto heaven" was not liked by the Lord and He confounded "their
language, that they may not understand one another's speech.

"So the Lord scattered them abroad from thence upon the face of all
the earth: and they left off to build the city" and Babel 1 "whose top
may reach unto heaven."

In such a way the Lord punished the people for their crazy and smug
pride.

As is known, this Story is placed in the very beginning of the Holy
Bible. Is the fact accidental? I don't think so. In particular, because
... in the very end of the Bible there is another Story as to "The Cre-
tians are always liars, evil beasts, slow bellies" ("The Epistle of Paul
to Titus," Chapter 1, Verse 12).

This story is known in science as the "Liar" paradox.
As was shown above (and strictly proved in [Zenkin 2000b],

[Zenkin 1997e]), a veritable logical sense of the "Liar" is not the tra-
ditional finite 'binomial' conjunction (L), but the infinite "reasoning"
(L4) which, being written in its explicit semantic form, is as follows
(here T = true, F = false):

(L5) T->-F->-T->-F->-T->-F->-T->-...
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I suspect that the Bible's "Liar" (L5) is not a common paradox, it
is an Omen and Warning to people to forbear in future from a build-
ing of new ambitious Babels, "whose top may reach unto heaven."
However this time the Lord, taking into account a possible over-the-
limit, 'left-hemispherical,' metamathematical 'progress' in the people's
brains, confounded not languages, but truth and falsity that people
"may not understand one another's speech" and "[leave] off to build"
any new Babels in future.

During two millenniums this Omen was existing in its latent (poten-
tial) form as a quite harmless logical puzzle. Cantor's ambitious trans-
finite 'stairway unto heaven' (Babel 2) actualized this highly explosive
mixture in the form of the infinite "reasoning" (L3) and truth and fal-
sity became indistinguishable within the framework of his "Study on
Transfinitum" and modern metamathematics and axiomatic set theory.

However today the problem, in all likelihood, overstepped the limits
of the abstract, academic sciences and became a global social phenom-
enon. To understand that it's enough simply to glance around or to
look at press-, media- and TV-mirrors of our real life.—Whether any-
body is able today surely to distinguish truth from falsehood and vice
versa?

"Hath not God made foolish the wisdom of this world?"—With what
an aim? . . .

"He that hath an ear, let him hear . . . "

8. We have a Project as to how to solve all the problems touched
upon in the paper and welcome any serious collaboration to realize the
Project.
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