Translator Disclaimer
2022 On Reflexivity and Point Spectrum
João Paulos
Author Affiliations +
Real Anal. Exchange 47(1): 167-178 (2022). DOI: 10.14321/realanalexch.47.1.1625080320

Abstract

In this note, we prove a characterization of reflexive Banach spaces with unconditional basis and study the set theoretical complexity of certain sets associated to linear bounded operators acting on reflexive separable Banach spaces.

Citation

Download Citation

João Paulos. "On Reflexivity and Point Spectrum." Real Anal. Exchange 47 (1) 167 - 178, 2022. https://doi.org/10.14321/realanalexch.47.1.1625080320

Information

Published: 2022
First available in Project Euclid: 13 June 2022

Digital Object Identifier: 10.14321/realanalexch.47.1.1625080320

Subjects:
Primary: 03E15
Secondary: 46B10 , 47A10

Keywords: descriptive set theory , point spectrum , Reflexive Spaces

Rights: Copyright © 2022 Michigan State University Press

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.47 • No. 1 • 2022
Back to Top