2021 Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation
Tiago Canarias, Alexei Karlovich, Eugene Shargorodsky
Author Affiliations +
Real Anal. Exchange 46(1): 121-148 (2021). DOI: 10.14321/realanalexch.46.1.0121

Abstract

Let $BV_p[0,1], 1 \le p \lt \infty$, be the Banach algebra of functions of bounded $p$-variation in the sense of Wiener. Recently, Kowalczyk and Turowska [9] proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p \in [1,\infty)$.

Citation

Download Citation

Tiago Canarias. Alexei Karlovich. Eugene Shargorodsky. "Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation." Real Anal. Exchange 46 (1) 121 - 148, 2021. https://doi.org/10.14321/realanalexch.46.1.0121

Information

Published: 2021
First available in Project Euclid: 14 October 2021

Digital Object Identifier: 10.14321/realanalexch.46.1.0121

Subjects:
Primary: 26A45 , 46J10

Keywords: Banach algebra of functions of bounded Wiener $p$-variation , multiplication in a Banach algebra , open bilinear mapping

Rights: Copyright © 2021 Michigan State University Press

Vol.46 • No. 1 • 2021
Back to Top