Abstract
Let $BV_p[0,1], 1 \le p \lt \infty$, be the Banach algebra of functions of bounded $p$-variation in the sense of Wiener. Recently, Kowalczyk and Turowska [9] proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p \in [1,\infty)$.
Citation
Tiago Canarias. Alexei Karlovich. Eugene Shargorodsky. "Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener $p$-variation." Real Anal. Exchange 46 (1) 121 - 148, 2021. https://doi.org/10.14321/realanalexch.46.1.0121
Information