2021 Ideal extensions of Olivier's theorem
Ladislav Mišík, János T. Tóth
Author Affiliations +
Real Anal. Exchange 46(1): 261-268 (2021). DOI: 10.14321/realanalexch.46.1.0261

Abstract

Let $p, q$ be given positive numbers and $a, b$ non-negative ones. In this paper we study and characterize the class $\mathcal S(a,b,p,q)$ of all admissible ideals $\mathcal I \subset 2^\mathbb N$ with the following property $$\sum_{n \in \mathbb N} n^a a^p_n \lt \infty\quad \Rightarrow \quad \mathcal I − \lim n^ba^q_n = 0,$$ for all sequences $(a_n)$ of positive real numbers. In a series of corollaries we discuss special cases including, also, several previously published theorems on this topic.

Citation

Download Citation

Ladislav Mišík. János T. Tóth. "Ideal extensions of Olivier's theorem." Real Anal. Exchange 46 (1) 261 - 268, 2021. https://doi.org/10.14321/realanalexch.46.1.0261

Information

Published: 2021
First available in Project Euclid: 14 October 2021

Digital Object Identifier: 10.14321/realanalexch.46.1.0261

Subjects:
Primary: 40A05 , 40A35
Secondary: 11B05

Keywords: $\mathcal I$-convergence , admissible ideal , convergent series , Olivier's theorem

Rights: Copyright © 2021 Michigan State University Press

Vol.46 • No. 1 • 2021
Back to Top