2020 Accessible Values for the Assouad and Lower Dimensions of Subsets
Changhao Chen, Meng Wu, Wen Wu
Real Anal. Exchange 45(1): 85-100 (2020). DOI: 10.14321/realanalexch.45.1.0085

Abstract

Let \(E\) be a subset of a doubling metric space \((X,d)\). We prove that for any \(s\in [0, \dim_{A}E]\), where \(\dim_{A}\) denotes the Assouad dimension, there exists a subset \(F\) of \(E\) such that \(\dim_{A}F=s\). We also show that the same statement holds for the lower dimension \(\dim_L\).

Citation

Download Citation

Changhao Chen. Meng Wu. Wen Wu. "Accessible Values for the Assouad and Lower Dimensions of Subsets." Real Anal. Exchange 45 (1) 85 - 100, 2020. https://doi.org/10.14321/realanalexch.45.1.0085

Information

Published: 2020
First available in Project Euclid: 9 May 2020

zbMATH: 07211605
Digital Object Identifier: 10.14321/realanalexch.45.1.0085

Subjects:
Primary: 28A05 , 28A80
Secondary: 26A05

Keywords: Assouad dimension , lower dimension

Rights: Copyright © 2020 Michigan State University Press

Vol.45 • No. 1 • 2020
Back to Top