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REMARKS ON THE CONTINUITY OF
FUNCTIONS OF TWO VARIABLES

Abstract

The continuity of f(x, y) at (x0, y0) can be described by the behavior
of f along a collection of paths toward (x0, y0) if the collection is rich
enough. The collection of paths that are C1 and convex is rich enough
but the collection of differentiable functions with bounded derivatives is
not. The collection of Cn parameterized paths (x(t), y(t)) for any n > 0
is also rich enough to capture continuity.

1 Introduction

Although the definition of continuity for functions of two variables is straight-
forward, it is always tempting to describe continuity in terms of approaching
the limiting point along paths and requiring the same limiting value along all
paths. The collection of “all paths” may be a bit vague and it is certainly
large. Any calculus book will have an example showing that approaching the
limiting point along all lines through the point does not suffice to describe
continuity, so the collection of lines is too small for this type of description of
continuity. What is the smallest class of paths through the limiting point so
that if a function is continuous on those paths, then the function is continuous?

Let f(x, y) be a function of two variables defined on an open set D in R2

and O ∈ D. Rosenthal in [6] shows that the collection of twice differentiable
curves is too small to describe continuity and that the collection of paths that
are continuously differentiable and convex is large enough. He proves in his
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Theorem 1 a discontinuity result and a continuity result. He shows (1) the
function f can be discontinuous at O even if f is continuous along every curve
through O which is (at least) twice differentiable; and (2) if f is continuous
along every continuously differentiable convex curve through O, then f is
continuous at O (as a function of two variables).

In particular, this implies that f can be discontinuous at O even if f is
continuous along every analytic curve through O; see [4, 5]. A similar remark
is made by Vulfson [7]. Note that there still a gap between the necessary con-
dition and sufficient condition for the continuity of f in terms of the continuity
of f along curves through O. In this paper we will prove that a function f
can be discontinuous at O even if f is continuous along every curve (convex
or not) through O which is once differentiable with bounded derivative. This
is almost equivalent to (2) above. In addition, we will show that with para-
metric curves the following necessary and sufficient condition holds: for any
integer n ≥ 0, f is continuous at (0, 0) if and only if f(x(t), y(t)) is continuous
at t = 0 for all functions x, y of t with (x(0), y(0)) = (0, 0) that are n times
differentiable at t = 0.

We do not know whether the preceding statement is still true if the class
of n times differentiable functions is replaced by the class of infinitely differ-
entiable functions or the class of analytic functions.

Investigations of alternative descriptions of continuity for functions of sev-
eral variables occur many times in the literature. A few of the works that are
related to the present paper include [1], [3], and [8]. In [1] Dzagnidze defines
several versions of continuity. An example is strong continuity in the sense
that, in each (unit) direction v, limx→0 f(x)− f(π(x)) = 0 where π(x) is the
project of x onto the line perpendicular to v, that is, π(x) = x− (v · x)v. It is
shown that f is continuous at O if and only if f is strongly continuous in each
(unit) direction v. The authors in [3] show that a certain monotone function
of two variables (in ordered topological spaces) is continuous if it is continuous
in each of the variables. In [8] the author gives a motivating example to show
that a function f(x, y) defined on a bicylinder (two cylinders intersecting at a
right angle), continuous in one variable and analytic in the other, need not be
continuous.

2 Continuity of Multivariate Functions

We begin with some notation for classes of single-valued functions. For a non-
negative integer n, let Cn be the set of all single-variable functions g whose
derivatives up to order n are continuous on the interval [−δ, δ] for some δ > 0,
which may depend on g. Let C0 = C. For α ∈ (0, 1], denote by Cn,α the set
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of all single-variable functions g whose derivatives up to order n are Hölder
continuous on the interval [−δ, δ] with exponent α; that is, there is a constant
B > 0 such that for all x, y ∈ [−δ, δ]

|g(k)(x)− g(k)(y)| ≤ B|x− y|α for k = 0, 1, ..., n.

We want to consider a class M of functions motivated by the modulus of
continuity. In [2], Guthrie demonstrates that the modulus of continuity (in a
more general setting) can be chosen to be a continuous function of h and the
point where continuity is discussed. For a function z ∈ C , the modulus of
continuity, ω(h) = sup|x|≤|h| |z(x)− z(0)|, has the following properties.

1. ω is an even function on [−δ, δ] for some δ > 0.

2. ω(0) = 0, continuous at 0 and increasing [0, δ].

Let M be the set of all functions in C satisfying (1) and (2).

Example 2.1. The setM contains the following functions: |h|α, |h|α| ln(|h|)|β
(for all numbers α > 0 and β), sin(|h|), 1− cos(h).

The functions in M form a natural set of comparison functions for the
order of convergence. The class O(ω) defined next is the set of all functions
that are O(ω(h)) as h→ 0 for some fixed ω ∈M.

Definition 2.2. For ω ∈M, let

1. O(ω) be the set of all functions g ∈ C such that |g(h) − g(0)| ≤ Bω(h)
for some B > 0 and all h close to 0.

2. O1(ω) be the set of all functions g with g, g′ ∈ O(ω).

Observe that the class O1(ω) includes only those functions with continuous
first derivatives in a neighborhood of 0.

Proposition 2.3. Let g be a function defined near 0 and α ∈ (0, 1]. Then the
following hold.

(1) If g ∈ C, then g ∈ O(ω) for some ω ∈M.
(2) If g ∈ C0,α, then g ∈ O(hα).
(3) If g ∈ C1,α, then g ∈ O1(hα). In particular, if g is twice differentiable

at 0, then g ∈ O1(h).

Proof. (1) If g is any function in C, then the modulus of continuity ω defined
above shows that g ∈ O(ω).
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(2) If g ∈ C0,α, then |g(x)− g(y)| ≤ B|x− y|α for x, y ∈ (−δ, δ) and some
B, δ > 0. In particular, |g(h)− g(0)| ≤ B|h|α for h ∈ (−δ, δ). So g ∈ O(hα).

(3) The hypotheses on g implies that |g′(x)− g′(y)| ≤ B |x− y|α. Letting
x = h and y = 0 gives |g′(h)− g′(0)| ≤ B |h|α which implies g ∈ O1(hα).

If g is twice differentiable at the origin, then |g′(h)− g′(0)| / |h| is bounded
near h = 0 so that g ∈ O1(h).

The next proposition gives some algebraic properties of M.

Proposition 2.4. If ω, γ ∈M, a, b ≥ 0, then

1. aω + bγ ∈M.

2. ω · γ ∈M.

3. ω ◦ γ ∈M.

Proof. Parts 1 and 2 are straightforward. Part 3 would be simple calculus
if differentiability of functions in M were assumed. That ω ◦ γ is even and
continuous at 0 is clear. For h and k positive and small enough, γ(h + k) >
γ(h), so since ω is increasing on some interval [0, δ], ω◦γ(h+k) = ω(γ(h+k)) >
ω(γ(h)) = ω ◦ γ(h) showing that ω ◦ γ is in M.

The following theorem is similar in spirit to Rosenthal’s Theorem 1 in [6].
Let D be an open set in R2 containing a point O, which is assumed to be
the origin O = (0, 0) for convenience. Let f(x, y) be a function defined on D.
The following theorem says that there are many functions f with the property
that f is discontinuous at O even though f is continuous on every continuously
differentiable curve in O1(ω) and through O. Thus the classes O1(ω) (for all
ω ∈M) are still too small to describe continuity of functions at O.

Theorem 2.5. For every ω ∈M, there is a function f defined on some open
set D that contains O such that

(1) f is discontinuous at O but continuous at every point in D \ {O}.
(2) for all z ∈ O1(ω) with z(0) = 0, f(x, z(x)) and f(z(x), x) are continu-

ous at x = 0.

Proof. Let g(x) = |x|
√
ω(x), x ∈ (−δ, δ). We define a function f in the

square D = (−δ, δ)× (−δ, δ) in a way similar to those in [5] and [6].

f(x, y) =

{
0, if |y| ≥ 3g(x) or |y| ≤ g(x);

1− |2− r|, if |y| = rg(x), 1 < r < 3.
(1)
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In particular, f(0, 0) = 0. Note that f is discontinuous atO since f(x, 2g(x)) ≡
1 as x→ 0 but is continuous at other points in D.

Now let z ∈ O1(ω). We show f(x, z(x)) is continuous at x = 0. By the
mean value theorem, for each x near 0, there exists a number rx between 0 and
x such that z(x) = z′(rx)x. Consider the two cases separately: (1) z′(0) 6= 0
and (2) z′(0) = 0.

In case (1), we may assume that (by reducing δ if necessary) that for all
x ∈ (−δ, δ):
|z′(rx)| ≥ 0.6|z′(0)| and

√
ω(x) ≤ 0.2|z′(0)|.

So for x ∈ (−δ, δ),

|z(x)| = |z′(rx)x| ≥ 0.6|z′(0)||x| ≥ 3|x|
√
ω(x) = 3g(x).

By the definition of f , f(x, z(x)) = 0. This implies that f(x, z(x)) → 0 =
f(0, 0) as x→ 0. So f(x, z(x)) is continuous at x = 0.

In case (2), |z′(rx)| ≤ Bω(x) for some constant B and all x close 0. Since
ω(0) = 0 and ω is continuous at 0, B

√
ω(x) ≤ 1 for x close to 0. So

|z(x)| ≤ B|x|ω(x) ≤ |x|
√
ω(x) ·B

√
ω(x) ≤ g(x).

By definition of f , f(x, z(x)) = 0 for x close to 0. This again implies that
f(x, z(x)) is continuous at x = 0.

Finally we show that f(z(x), x) is also continuous at x = 0. Because
z(0) = 0 and z′(0) exists, there is a number B such that |z(x)| ≤ B|x| for x
close to 0. It follows that

g(z(x)) = |z(x)|
√
ω(z(x)) ≤ B|x|

√
ω(B|x|) = |x| ·B

√
ω(B|x|).

So for x sufficiently close to 0, B
√
ω(B|x|) < 1/3, which implies that g(z(x)) ≤

|x|/3. By the definition of f , f(z(x), x) = 0 for x sufficiently close to 0.
Therefore, f(z(x), x) is continuous at x = 0.

Because the classes of C1,α, C2, Cn (n ≥ 2), C∞, and Cω (the set of analytic
functions) are all subsets of O1(hα) (see Proposition 2.4 above), the theorem
implies the following result; part of it is proved in [4, 5, 6].

Corollary 2.6. Given any α ∈ (0, 1], there is a function f defined on some
open set D that contains O such that

(1) f is discontinuous at O but continuous at every point in D \ {O}.
(2) for all z ∈ C1,α with z(0) = 0, f(x, z(x)) and f(z(x), x) are continuous

at x = 0. In particular, f(x, z(x)) and f(z(x), x) are continuous at x = 0 for
all z ∈ Cn (n ≥ 2), C∞, Cω with z(0) = 0.
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So far we have proved the existence of a function that is discontinuous at O
but which is continuous along certain types of curves. The conclusions of The-
orem 2.5 and its corollary are “almost sufficient” in the following sense: given
a function f that is discontinuous at O, there is a continuously differentiable
convex curve through O so that f restricted to this curve has a discontinuity
at O ([6]). Furthermore there are smooth parameterized functions through O
so that f on those curves is discontinuous at O. This is the content of the
next theorem.

Theorem 2.7. Suppose a function f(x, y) defined in D is discontinuous at
(0, 0). Then

(1) there is a continuously differentiable convex function z ∈ C1 such that
either f(x, z(x)) or f(z(x), x) is discontinuous at x = 0.

(2) for any integer n ≥ 0, there exist functions x(t), y(t) ∈ Cn such that
f(x(t), y(t)) is discontinuous at t = 0.

Proof. Part (1) is proved in [6] with a geometric construction. A more
analytic proof is outlined as follows. (See Remark 2.8 for a much shorter
construction in a special case.)
Step I. First note that the discontinuity of f at O implies that there is a
sequence (xi, yi)→ (0, 0) such that

lim
i→∞

f(xi, yi) exists (might be infinity) but 6= f(0, 0). (2)

Step II. By passing to a subsequence and rotating/reflecting the plane about
x-, y-axes or y = ±x if necessary, we can assume that the sequence (xi, yi) in
(2) has the following properties.

(1) xi ≥ yi > 0 and both xi and yi are decreasing to 0.
To see this, consider the regions in the plane divided by x = 0, y = 0, y =

±x. One of them must contain infinitely many points in the sequence (xi, yi).
By rotation and reflection, we may assume that it is the region defined by
x ≥ y > 0.

(2) si = yi
xi
→ 0 and si is strictly decreasing.

To see this, by taking a subsequence we may assume that yi
xi
→ s ∈ [0, 1].

By rotation/reflection and taking a subsequence, we may further assume that
s = 0 and yi/xi is strictly decreasing.

(3) mi = yi−yi+1

xi−xi+1
→ 0 and mi is decreasing.

To prove this, start with (x1, y1) and (x2, y2). Choose (xi, yi), i > 2, such
that

y2 − yi
x2 − xi

<
y1
x1

<
y1 − y2
x1 − x2

.
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This is possible because y2
x2
< y1

x1
and xi, yi → 0 as i→∞. Rename (xi, yi) as

(x3, y3). Repeating this process we get mi+1 <
yi
xi
≤ mi for all i ≥ 1.

Step III. Let n1 = m1 and ni = mi+mi−1

2 for i ≥ 2. Let y = qi(x) be
the equation of the line through (xi, yi) with slope ni, i ≥ 1. Then q(x) =
sup{qi(x), i ≥ 1} for x ∈ [−1, x1] is a piecewise linear convex function q(xi) =
yi for all i = 1, 2, 3, . . .. We can smooth the corners of q by using arcs of circles
tangent to the graph of q to get a function p that is convex, C1 and p(xi) = yi
for all i = 1, 2, 3, . . ..

Here are the details of the smoothing. In brief, we show how to insert
an arc of a circle that joins smoothly two adjacent lines. For j = i, i + 1 let
lj denote the line yj = qj(x). Let (x̂i, ŷi) be the intersection of the lines li
and li+1. Consider the two line segments, one from (xi, yi) to (x̂i, ŷi) and the
other from (xi+1, yi+1) to (x̂i, ŷi). Construct the perpendicular bisector to the
shorter segment. Reflect this bisector across the angle bisector between the
lines li and li+1. The result is two lines perpendicular to the lines li and li+1,
respectively. These lines meet along the angle bisector. Use this intersection
point as the center of a circle tangent to both the lines li and li+1. Then the
piecewise defined function “segment of line li followed by a portion of a circle
followed by a segment of line li+1” is (a part of) the desired C1 convex curve
y = p(x).
Part (2). Let n be the fixed integer in the statement of the theorem. First
note that by passing to a subsequence we may assume that

xi, yi ≤ 2−ni

for i = 1, 2, 3, . . . . Now let φ : [0, 1] → R be a Cn+1 function such that
φ(0) = 0, φ(1) = 1 and φ(k)(0) = φ(k)(1) = 0 for k = 1, ..., n + 1. There
are many such functions such as polynomials but the specific form of φ is not
important here. Denote

Bk = max
0≤t≤1

|φ(k)(t)|.

We next define a function that pieces together compressed versions of φ on a
collection of adjacent intervals of decreasing length. Define x(t) as follows.

x(t) =


0 t ∈ [−1, 0]

xiφ(2i+1(t− 2−i−1))

+ xi+1φ(2i+1(2−i − t)) t ∈ [2−i−1, 2−i], i = 0, 1, 2, . . .

Then for all i’s,

x(2−i−1) = xiφ(0) + xi+1φ(1) = xi+1

x(2−i) = xiφ(1) + xi+1φ(0) = xi
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so that x interpolates the xi’s at 2−i. Note that

x(k)(t) = 2(i+1)kxiφ
(k)(2i+1(t− 2−i−1)) + 2(i+1)kxi+1φ

(k)(2i+1(2−i − t)).

So x(k)(2−i−1) = x(k)(2−i) = 0 for all positive integers k ≤ n + 1 because
φ(k)(0) = φ(k)(1) = 0. In addition,

|x(k)(t)| ≤ Bk2(i+1)k[xi + xi+1] ≤ Bk2(i+1)k2−ni+1 ≤ 2k+1Bk

for t ∈ [−1, 1]. So x(t) is Cn on [−1, 1] and x(2−i) = xi. Similarly we can define
a Cn function y(t) with y(2−i) = yi. Because of (2), the function f(x(t), y(t))
must be discontinuous at t = 0.

Remark 2.8. In the proof of Part (1), if we are interested in merely a contin-
uously differentiable function (not necessarily convex), then the easiest defini-
tion of p might be

p(x) =


0 x ∈ [−1, 0]

yi+1 + mi

hi
(x− xi+1)2

− 2mi

h2
i

(x− xi+1)2(x− xi) x ∈ [xi+1, xi], i = 1, 2, . . .

where hi = xi − xi+1. Note that p on [xi+1, xi] is just the cubic polynomial
satisfying

p(xi+1) = yi+1, p(xi) = yi, p
′(xi+1) = p′(xi) = 0.

It is easy to see that p is continuously differentiable on [−1, 1].

The following corollary to Theorems 2.5 and 2.7 gives some necessary and
sufficient conditions for the continuity of a two-variable function. The corollary
is essentially a statement of the contrapositive of these theorems thus turning a
“negative” result on the existence of a discontinuous function into a “positive”
statement about continuous functions. The new aspect of the corollary is the
observation that while the collection of graphs of C1 functions, either (x, z(x))
or (z(x), x) is sufficient to describe continuity, the collection of parameterized
curves (x(t), y(t)) for functions x and y in Cn, for any positive integer n, also
suffices to describe continuity of f(x, y).

Corollary 2.9. The function f(x, y) is continuous at (0, 0) if and only if one
of the following holds.

(1) for every function z ∈ C1 with z(0) = 0, f(x, z(x)) and f(z(x), x) is
continuous at x = 0.

(2) for every convex function z ∈ C1 with z(0) = 0, f(x, z(x)) and f(z(x), x)
is continuous x = 0.

(3) for some natural number n and all functions x(t), y(t) ∈ Cn with
(x(0), y(0)) = (0, 0), f(x(t), y(t)) is continuous at t = 0.
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Remark 2.10. Note that (1) and (2) are false if C1 is replaced by C2 or O1(ω)
for any ω ∈M as shown by the construction in Theorem 2.5.

3 Concluding Remarks

Rosenthal [6] includes several applications of his main theorem. These appli-
cations pertain to various properties that a function can have at or near a
point p0. Such properties include existence of a tangent plane, existence of
a limit, boundedness, maxima, and others. The applications have the form:
a function has property P in case it has property P along every C1 convex
curve (or every parametric Cn curve for any n ≥ 2) through p0 ; the function
does not necessarily have property P if it has property P along every C2 curve
through p0. Theorem 2.7 can be used to show that the set of curves C2 can
be replaced with the larger set C1,α and this set of curves is still not large
enough to ensure property P for an arbitrary function. The examples needed
are essentially the same as in [6].

Finally we note that the results in section 2 can be extended to functions
of more than two variables. For example, the following can be proved.

Theorem 3.1. f(x, y, z) is continuous at (0, 0, 0) if and only if one of the
following holds.

(1) for all functions u, v ∈ C1 with u(0) = v(0) = 0, f(x, u(x), v(x)) and
f(u(x), x, v(x)), f(u(x), v(x), x) are continuous x = 0.

(2) for some natural number n and all functions x(t), y(t), z(t) ∈ Cn with
x(0) = y(0) = z(0) = 0, f(x(t), y(t), z(t)) is continuous at t = 0.
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