Open Access
2006/2007 Weighted Orlicz-Type Integral Inequalities for the Hardy Operator
C. J. Neugebauer
Real Anal. Exchange 32(2): 495-510 (2006/2007).


We study integral inequalities for the Hardy operator $Hf$ of the form $\int_0^\infty\Phi[Hf^p]\,d\mu\leq c_0\int_0^\infty\Phi[c_1f^p]\,d\mu$, where $\Phi$ is convex, $\mu$ is a measure on $\mathbb R_+$, $1\leq p < \infty$, and $f$ is non-increasing. The results we obtain are extensions of the classical $B_p-$ weight theory [1,5].


Download Citation

C. J. Neugebauer. "Weighted Orlicz-Type Integral Inequalities for the Hardy Operator." Real Anal. Exchange 32 (2) 495 - 510, 2006/2007.


Published: 2006/2007
First available in Project Euclid: 3 January 2008

zbMATH: 1134.42009
MathSciNet: MR2369858

Primary: 42B25 , 42B35

Keywords: Hardy operato , weights‎

Rights: Copyright © 2006 Michigan State University Press

Vol.32 • No. 2 • 2006/2007
Back to Top