Open Access
2006/2007 Slow points for functions in the Zygmund class Λd*.
Stephen Abbott, J. M. Anderson, Loren D. Pitt
Author Affiliations +
Real Anal. Exchange 32(1): 145-170 (2006/2007).


Using probabilistic methods, we find the exact Hausdorff measure function and dimension of sets of dyadic Lipschitz points (i.e., slow points) for functions belonging to particular Zygmund-type classes. We then explore, in depth, the relationship between sets of slow points and sets of standard Lipschitz points, both in the particular case of the van der Waerden--Takagi function and for more general dyadic Zygmund functions.


Download Citation

Stephen Abbott. J. M. Anderson. Loren D. Pitt. "Slow points for functions in the Zygmund class Λd*.." Real Anal. Exchange 32 (1) 145 - 170, 2006/2007.


Published: 2006/2007
First available in Project Euclid: 17 July 2007

zbMATH: 1127.28002
MathSciNet: MR2329227

Primary: 26A16 , 28A78
Secondary: 60G46

Keywords: Hausdorff measure , Lipschitz and dyadic Lipschitz points , Zygmund classes

Rights: Copyright © 2006 Michigan State University Press

Vol.32 • No. 1 • 2006/2007
Back to Top