Abstract
A function $f\colon{\mathbb{R}}\to{\mathbb{R}}$ is said to be vertically rigid provided its graph $G(f)=\{{\langle} x,f(x){\rangle}\colon x\in{ \mathbb{R}}\}$ is isometric with the graph of the function $kf$ for every non-zero $k\in{\mathbb{R}}$. We show that the group homomorphisms $f$ from ${ \langle}{\mathbb{R}},+{\rangle}$ into ${\langle}{\mathbb{R}}^+,\cdot{\rangle} $ is vertically rigid if and only if it is an epimorphism. Some other examples of vertically rigid functions will also be given. A problem of characterizing all vertically rigid functions remains open.
Citation
Brandi Cain. John Clark. David Rose. "Vertically rigid functions.." Real Anal. Exchange 31 (2) 515 - 518, 2005/2006.
Information