Open Access
2003-2004 Transitive properties of the ideal S2.
Jan Kraszewski
Author Affiliations +
Real Anal. Exchange 29(2): 629-639 (2003-2004).

Abstract

In this paper we compute transitive cardinal coefficients of the $\sigma$-ideal $\mathbb{S}_2$, the least nontrivial productive $\sigma$-ideal of subsets of the Cantor space $2^\omega$. We also apply transitive operations to $\mathbb{S}_2$. In particular, we show that $\sigma$-ideal of strongly $\mathbb{S}_2$ sets is equal to $\mathbb{B}2$, one of Mycielski ideals.

Citation

Download Citation

Jan Kraszewski. "Transitive properties of the ideal S2.." Real Anal. Exchange 29 (2) 629 - 639, 2003-2004.

Information

Published: 2003-2004
First available in Project Euclid: 7 June 2006

MathSciNet: MR2083801

Subjects:
Primary: 03E02 , 03E17

Keywords: Cantor space , Ideals , partitions , transitive cardinal coefficients

Rights: Copyright © 2003 Michigan State University Press

Vol.29 • No. 2 • 2003-2004
Back to Top