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Abstract
In this paper we shall show that the set C of all bounded continuous
functions is superporous in the space DBi*. Moreover, for an arbitrary
function f defined on C there exists a quasi-continuous extension f; of

this function on DBT*, such that C is the set of all discontinuity points
of fl-

1 Introduction

This article contains some properties of the space of Darboux functions be-
longing to the class Bi*. The class Bf* has been introduced by R. J. Pawlak
in 2000 ([5]).

We will use mostly standard notations. In particular by the letter R we
denote the set of all real numbers (as well as the space with the natural
topology). By the letter C we shall denote the set of all bounded continuous
functions. Let f : X — Y, where X and Y are topological spaces. We say
that f is Darboux functions if the image f(C) is a connected set, for each
connected set C' C X.

The set of all discontinuity points of f we denote by Dy. If A is a subset of
the domain of f, then the restriction of f to A we denote by f [ A. A function
f belongs to the class Bi* if either Dy = () or f | Dy is the continuous function

By the symbol DB7* we shall denote the set of all bounded Darboux func-
tions f : R — R belonging to the class Bi*, with the metric of the uniform
convergence.

Let X and Y be topological spaces and let f,g : X — Y be continuous
mappings. We say that f and g are homotopic if there exists a continuous
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mapping £ : X x [0,1] — Y (the mapping ¢ is called homotopy between f and
g) such that &(x,0) = f(x) and &(z,1) = g(x) (for each x € X). This relation
we denote by f%g.

The symbol B(x,¢) denotes the ball with the centre at x and the radius
€ > 0. The notions and symbols we use, connected with porosity, come from
papers [9] and [10]. Let X be a metric space. Let M C X, x € X and
S > 0. Then we denote by ~(z, S, M) the supremum of the set of all » > 0
for which there exists z € X such that B(z,r) C B(z,S)\ M. If p(M,z) =
2~limsup5é0+7(m’fs’M) > 0, then we say that M is porous at z. If M is porous
at each point x € X then we shall write M C, X.

We say that the set C' is superporous at xg, if the set C U A is porous at
xg, for each set A porous at zy. We say that a set C' C X is a superporous
set in X if C is superporous set at each point of X. This fact we denote by
CCsp X.

By a (topological) road in the topological space X we mean a set f([0, 1]),
where f : [0,1] — X is a bounded continuous function. The point f(0) is the
initial point and f(1) is the end-point of this road.

2 Main Results

The next theorem is a stronger version of the results from [4].
Theorem 1. C C,, DBT™.

ProOOF. Let f € DBT" and let A C DB]" be an arbitrary set porous at f.
Put Z = CU A. We shall show, that Z is a porous set at f. Let now R > 0 be

a fixed real number. Let us put o9 = 7(];’7};"4) > 0. Then there exists a real
number o > 0y and a function g € DB}* such that

B(g,0- R) C B(f,R) \ A. 1)
To prove our theorem it is sufficient to show that there exists a function

h € DBT* such that

B(h,%) C B(f,R)\ Z.

Let z ¢ ﬁg (observe, [5], that such a point exists). Let 6 > 0 be a number
such that
— c-R c-R
[x0 — 0,204+ 6]N Dy = () and g([zo — 0, 20 +9]) C (g(x0) — I g(xo0) + T)'

Let us define required function i : R — R in the following way:
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h(z) { gx) if x€ (—oo,xg—0|U{zo} U][xg+ 0, +00),
t(x) if x€ (xro—0,m0)U (o, z0+9),

where ¢ is a continuous function mapping [zg — 6, xo) U (29, 2o + ] into R such
that t(zo — 0) = g(zo — 9), t(zo + ) = g(xo + 0) and ¢((z, zo)) = t((z0,y)) =
[9(x0) — %,g(wo) + %], for each x € (xg — d,20) and y € (xo,x0 + 9).

We shall show that h € DB]*. Remark that h | (—oo,zo — 8], h | [zo +
0,400), h | [xg—0,20+3] are Darboux functions. Then (according to the proof
of Lemma 1 from [8], see also Lemma 1.4 from [7]) h is a Darboux function.
On the other hand

Dy, = (DyN (=00, — ) U (zg + J,+00)) U {zo},

xo is an isolated point in the set Dy, and h, g are agree on the set Dy \ {zo}.
So h € Bi*, because g € Bi*.

Obviously
o R
ol g) < 5.
It is easy to see that
‘R
B(h, 75=) € Blg,o - R). 2)
Now, we shall show that
‘R
B(h,—”8 )ne =90. (3)
Indeed. Let I € B(h, %) and let {x,} C (zo — d,20) be an increasing

sequence converging to zo such that h(z,) = g(zo) + ZE. Clearly i(z,) >

g(zo) + % and I(zg) < g(wo) + ZE and so g is a discontinuity point of I.
From (1),(2) and (3) it follows that

B(h,%)ﬂ (Auc) =10
and so R
B(h,75) € B, R)\ Z.
Consequently, p(Z, f) > 0, which finishes this proof. O

Definition 1. [3]. We say that a function f: X — Y is 2-continuous (briefly
f € C9) if there exist two sets A and B such that X = AUB and the restrictions
f 1 Aand f | B are continuous functions.
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Lemma 1. [3]. DB} = DCs.
Lemma 2. If f € DB and g € C, then f + g € DB]".

PROOF. Let f € DB7* and g € C. From Lemma 1 we obtain that f € Cy. Let
A, B be two sets such that AU B = R and the restrictions f [ A and f | B
are continuous functions. Obviously g [ A and g [ B are continuous functions,
too. So, f+g [ Aand f+ g | B are continuous functions. On the other hand
f+ g€ DBy ([1], Theorem I1.3.2, see also [6],[2]). Consequently, f + g € DCs
and, according to Lemma 1 we have f + g € DBI". O

Lemma 3. For each a € R and for an arbitrary f € DB}* we have o - f €
DBY*.

ProOOF.! Let a € R and f € DB;*. From Lemma 1 we obtain that f € Co.
Thus R = AU B, where A, B are the subsets of R such that f | A and
f | B are continuous functions. Obviously, (a- f) [ A and (« - f) | B are

continuous functions, too. So, - f € C3. Moreover, if f € D then a- f € D,
so «- f € DCy = DBT™. O

Theorem 2. Let j : C — DBI* be the identity mapping (j(f) = f, for each
f €C). Then there exists a continuous mapping t : C — DB* and a homotopy
h:C x [0,1] — DBI" such that j3t and h(C x (0,1]) N C = 0.

PROOF. Let us define a function £ : R — [0, 1] by letting

0 if x¢€ (foo,()]u{in_1 :n=1,2,...} U(1,400),

)1 if ze{f£:n=12..}
@ =9 L@ if relh sl (n=12,..),

la(x) if 7€ |52y, 5] (n=1,2,..),

2n+1° 2n

_1
2n—1

ll(Ttl) =0, forn=1,2,... and I : [ﬁ, ﬁ] — [0,1] is a linear function

such that lg(ﬁ) =0 and lz(5;) = 1, for n = 1,2,.... Of course | £(z) |<

1, for x € R.
It is easy to see that £ € DBI™. Let us define ¢t : C — DB}™ by the formula

where [1 : [5-, ] — [0,1] is a linear function such that l;(5-) = 1 and

t(p) = p+ &, for each p € C.

Clearly, u + & € DB]™ (see Lemma 2). Moreover t is a continuous mapping.
Let us define the homotopy h : C x [0,1] — DB}* by letting

h(f,ry=f+r-&

1The Reviewer has remarked that this lemma can be proved in a straightforward manner
independent of the result given in Lemma 1.
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It is easy to see that h is a continuous function. By virtue of Lemma 3,
r-& € DBI* and so according to Lemma 2, f +r - & € DBT".
Now, we shall show that j3t and h(C x (0,1]) NC = (). First observe that

h(f,0) = f=i(f) and h(f,1) = f+ & = t(f).

Let f € C be an arbitrary function and let » € (0,1]. It is not difficult to see
that h(f,r) ¢ C. O

Corollary 1. For every continuous function k, there exists a (topological)
road R with the initial point at k such that ) # R\ {k} € DB;*\ C.

PROOF. Let k be an arbitrary continuous function. Using the terminology of
the proof of Theorem 2 one can say that there exists a homotopy A : Cx [0, 1] —
DB7* such that h(k,0) =k, h(k,1) = t(k), where t(k) is some function from
DB7*. Moreover,

hi = h | {k} x [0,1] is a continuous function.

To the simplify notation we can assume that hy is a function of a one variable
hi : [0,1] — DBI* and so for each r € (0,1], hg(r) € DBT" \ C. To finish,
observe that hy(0) = k and hg(1) = t(k). O

Theorem 3. For each function F : C — R there exists an extension Fy :
DBI* — R of a function F, such that Fy is a quasi-continuous function and
Dp, =C. Moreover, if F' is a Darboux function then Fi is a Darboux function,
too.

PROOF. Let F' : C — R be an arbitrary function. Define F} : DB* — R by
the formula

WIS ¢ ke DB\ C.

{ F(k)  if kec,

We shall show that F} is a quasi-continuous function. First we can observe
that Fi is a continuous function on the set DB \ C. So, it suffices to prove
that for every k € C, F} is quasi-continuous at k.

Fix k € C. According to Corollary 1 there exists a road Ry with the initial
point at k such that § # Ry \ {k} € DB7"\C. Let § > 0, ¢ > 0. First, we
shall show that there exists a road Rj, C Ry, with the initial point at k such
that R), C B(k,0) and 0 # R}, \ {k}. Let hy : [0,1] — DBI" be a continuous
function such that hg([0,1]) = Ry (hx(0) = k). By the continuity of hy there
exists a positive number « such that hy ([0, a]) C B(k,0).

Consider the following cases:
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1) hx([0,a]) # {k}. In this case we put ap = a.
2) hi([0,0]) = {k}.

Let a3 = sup{a’ : hy([0,¢']) = {k}}. By the continuity of hg, hi(a1) = k
and there exists ag € [ag,1] such that h([0,a0]) = hi([or, ao]) C B(k,0).
Observe that

hi ([0, aol) # {k}- (4)

In the both cases there exists a road
% = hi([0,a0]) C B(k,8) N'Ry, such that R}, \ {k} # 0.

Now, we shall show that

Fi(Ry) =R. ()

Indeed. Let z € R and let & € R} \ {k} € DBi" \ C. Let us assume
that s1 = 0(£1,C). Then there exists a real number sy € (0,s1) such that
.
the set p*(R},) is connected (as a continuous image of the connected set R}),
0 € 0*(R},) (because k € R}) and s1 € ¢*(R},). Consequently, sy € 0*(R},).
Thus there exists {y € R}, such that so = 0*(&) = 0(€0,C) (of course & ¢ C).
Therefore Fy (&) = g({i,C) -8l ey = 5o sin oo = z, and the condition (5) is
proved.

To finish the proof of the quasi-continuity of F; at k let us consider a
number ¢ € (Fy(k) — e, F1(k) + ). From the condition (5) one can deduce
that there exists ¢’ € R}, such that Fi(¢) = cand ¢/ € DB*\C, so ¢ is a
continuity point of Fj.

Now, we assume that F' : C — R is a Darboux function. We shall prove
that F; is a Darboux function, too. Let A be a connected set in the space
DBi*. If A CC then Fi(A) = F(A) is a connected set. If A C DBT™ \ C then,
from the continuity of Fy on the set DBT*\ C, it follows that A is a connected
set.

Finally, suppose that ANC # 0 # A\ C. Then there exists go € A\ C. Let
Bo = 0(go,C) > 0. We shall show that

sin = z- 9. Let us denote by 0*(¢) = o(¢,C), for any ¢ € DBT*. So

Vse(0,5] Jgea 0(g,C) =B (6)

Let 8 € (0, 5p) (for 8 = By we have g = go).
It suffices to show that AN Cjs # 0, where Cz = 0*~1(3) (o* is defined as
in the proof of the condition (5)).
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Conversely, suppose that AN Cg = . Assume
Ar=0"71([0,8)) N A and Ay = 0" (B, +00)) N A.

One can easily verify that A = A; U As. Additionally, A; # () because
ANC # 0 and Ay # ) because go € A. Moreover, A; C 0*~1([0,]) and Ay C
0*71([B, +0)). Since A; and A are separated sets, then A is a disconnected
set. The obtained contradiction proves that A N Cjs # () and so the condition
(6) is true. Hence, F;(A) is a connected set. To conclude the proof it suffices
to observe that D, = C. O
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