Open Access
2003-2004 On the sum of functions with condition s3.
Ewa Stro{ń}ska
Author Affiliations +
Real Anal. Exchange 29(1): 155-174 (2003-2004).

Abstract

A function $f:{\mathR} \to {\mathR}$ satisfies condition $(s_3)$ if for each real $\varepsilon > 0$, for each $x$ and for each set $U \ni x$ belonging to the density topology there is an open interval $I$ such that $A(f) \supset I \cap U \neq \emptyset $ and $f(U\cap I) \subset (f(x)-\varepsilon ,f(x)+\varepsilon )$, where $A(f)$ denotes the set of all approximate continuity points of $f$. In this article it is show that the sum of two functions with the condition $(s_3)$ is the sum of two Darboux functions satisfying this condition $(s_3)$ and that every a.e.-continuous function with some special condition is the sum of two functions with condition $(s_3).$

Citation

Download Citation

Ewa Stro{ń}ska. "On the sum of functions with condition s3.." Real Anal. Exchange 29 (1) 155 - 174, 2003-2004.

Information

Published: 2003-2004
First available in Project Euclid: 9 June 2006

MathSciNet: MR2061301

Subjects:
Primary: 26A03 , 26A15

Keywords: approximate continuity , condition $(s_3)$ , condition $(s_4)$ , Darboux property , density topology

Rights: Copyright © 2003 Michigan State University Press

Vol.29 • No. 1 • 2003-2004
Back to Top