Open Access
2003-2004 Bilipschitz mappings of nets.
Eva Matoušková
Author Affiliations +
Real Anal. Exchange 29(1): (2003-2004).


Let $0<a<\sqrt 2$. Suppose $\delta=\delta(d,\eps)$ has the following property. If $\mathcal N$ is an $a$-net of the Euclidean ball in $\RR^{d}$, $A\subset \mathcal N$, and $f:A\to \RR^d$ is $(1+\eps)$-bilipschitz, then $f$ admits a $(1+\delta)$-bilipschitz extension $f:\mathcal N\to \RR^d$. We give some estimates of $\delta$.


Download Citation

Eva Matoušková. "Bilipschitz mappings of nets.." Real Anal. Exchange 29 (1) 2003-2004.


Published: 2003-2004
First available in Project Euclid: 9 June 2006

zbMATH: 1056.46018
MathSciNet: MR2061295

Primary: 46B20 , 46C05

Keywords: approximate , biLipschitz , Extension‎ , net

Rights: Copyright © 2003 Michigan State University Press

Vol.29 • No. 1 • 2003-2004
Back to Top