Open Access
2001/2002 Lebesgue Integrability Implies Generalized Riemann Integrability in ℝ]0,1].
P. Muldowney, V. A. Skvortsov
Real Anal. Exchange 27(1): 223-234 (2001/2002).

Abstract

It is shown that in the space ${\R}^{]0,1]}$ any function which is Lebesgue integrable with respect to Wiener measure is also Henstock integrable.

Citation

Download Citation

P. Muldowney. V. A. Skvortsov. "Lebesgue Integrability Implies Generalized Riemann Integrability in ℝ]0,1].." Real Anal. Exchange 27 (1) 223 - 234, 2001/2002.

Information

Published: 2001/2002
First available in Project Euclid: 6 June 2008

zbMATH: 1021.28011
MathSciNet: MR1887853

Subjects:
Primary: 26A39 , 28C20 , ‎46G12

Keywords: Henstock integral , Lebesgue integral in infinite dimensions , Wiener measure

Rights: Copyright © 2001 Michigan State University Press

Vol.27 • No. 1 • 2001/2002
Back to Top