Abstract
Using a standard complete metric $w$ on the set $F$ of continuous functions of bounded variation on the interval $[0,1]$, we find that a typical function in $F$ has an infinite derivative at continuum many points in every subinterval of $[0,1]$. Moreover, for a typical function in $F$, there are continuum many points in every subinterval of $[0,1]$ where it has no derivative, finite nor infinite. The restriction of the derivative of a typical function in $F$ to the set of points of differentiability has infinite oscillation at each point of this set.
Citation
F. S. Cater. "On the Derivatives of Functions of Bounded Variation." Real Anal. Exchange 26 (2) 923 - 932, 2000/2001.
Information