Open Access
2000/2001 On the n-Dimensional Perron Integral Defined by Ordinary Derivates
B. Bongiorno, Luisa Di Piazza, Valentin Skvortsov
Real Anal. Exchange 26(1): 371-380 (2000/2001).

Abstract

We introduce an $n$-dimensional Perron integral defined in terms of ordinary (in the Saks terminology) derivates. We prove that we get an equivalent definition of this integral if in the definition we use only continuous major and minor functions. We also prove that this integral is equivalent to a version of the Kurzweil-Henstock integral defined by Mawhin.

Citation

Download Citation

B. Bongiorno. Luisa Di Piazza. Valentin Skvortsov. "On the n-Dimensional Perron Integral Defined by Ordinary Derivates." Real Anal. Exchange 26 (1) 371 - 380, 2000/2001.

Information

Published: 2000/2001
First available in Project Euclid: 2 January 2009

zbMATH: 1015.26018
MathSciNet: MR1825515

Subjects:
Primary: 26A39 , 26A42 , 26A45

Keywords: derivation basis , ordinary derivates , Perron integral , variation

Rights: Copyright © 2000 Michigan State University Press

Vol.26 • No. 1 • 2000/2001
Back to Top