Abstract
If $\sum a_{k}$ and $\sum b_{k}$ are series of non-negative terms, we provide a necessary and sufficient condition that $sup_{n}\{% \sum_{1}^{n}a_{k}/\sum_{1}^{n}b_{k}\}=\infty .$
Citation
Guanzhen Zhou. Songping Zhou. "On Series of Non-Negative Terms." Real Anal. Exchange 26 (1) 467 - 470, 2000/2001.
Information
Published: 2000/2001
First available in Project Euclid: 2 January 2009
zbMATH: 1011.40004
MathSciNet: MR1825528
Subjects:
Primary:
40A05
Secondary:
26A45
Keywords:
generalized bounded variation
,
positive series
,
Waterman classes
Rights: Copyright © 2000 Michigan State University Press