Open Access
2000/2001 A Study of Some General Integrals that Contains the Wide Denjoy Integral
Vasile Ene
Real Anal. Exchange 26(1): 51-100 (2000/2001).


In this paper, using Thomson's local systems, we introduce some very general integrals, each containing the wide Denjoy integral: the $[{\mathcal S}_1 {\mathcal S}_2 {\mathcal D}]$-integral (of Lusin type); the $[{\mathcal S}_1 {\mathcal S}_2 {\mathcal V}]$-integral (of variational type); the $[{\mathcal S}_1 {\mathcal S}_2 {\mathcal W}]$-integral (of Ward type); the $[{\mathcal S}_1 {\mathcal S}_2 {\mathcal R}]$-integral (of \linebreak Riemann type); We prove that in certain conditions the integrals $[{\mathcal S}_1 \!{\mathcal S}_2 {\mathcal V}]$ and $[{\mathcal S}_1 {\mathcal S}_2 {\mathcal W}]$ are equivalent (it is shown that the first integral satisfies a Saks-Henstock type lemma). For the $[{\mathcal S}_1{\mathcal S}_2{\mathcal R}]$-integral we only show that it satisfies a quasi Saks Henstock type lemma (see Lemma 7.4). Finally, if ${\mathcal S}_1 = {\mathcal S}_o^+$ and ${\mathcal S}_2 = {\mathcal S}_o^-$ we obtain that the integrals $[{\mathcal S}_o^+ {\mathcal S}_o^- {\mathcal V}]$, $[{\mathcal S}_o^+ {\mathcal S}_o^- {\mathcal W}]$ and $[{\mathcal S}_o^+ {\mathcal S}_o^- {\mathcal D}]$ are equivalent (in fact the $[{\mathcal S}_o^+ {\mathcal S}_o^- {\mathcal D}]$-integral is exactly the wide Denjoy integral). But the equivalence of the three integrals with the $[{\mathcal S}_o^+ {\mathcal S}_o^- {\mathcal R}]$-integral follows only if we assume the additional condition that the primitives of the $[{\mathcal S}_o^+{\mathcal S}_o^- {\mathcal R}]$-integral are continuous (see Theorem11.1).


Download Citation

Vasile Ene. "A Study of Some General Integrals that Contains the Wide Denjoy Integral." Real Anal. Exchange 26 (1) 51 - 100, 2000/2001.


Published: 2000/2001
First available in Project Euclid: 2 January 2009

MathSciNet: MR1825497

Primary: 26A39 , 26A42 , 26A45

Keywords: Denjoy integral , Henstock-Kurzweil integral , local systems , Ward integral

Rights: Copyright © 2000 Michigan State University Press

Vol.26 • No. 1 • 2000/2001
Back to Top