Open Access
1999/2000 Stability Versus Hyperbolicity in Dynamical and Iterated Function Systems
Amiran Ambroladze, Klas Markström, Hans Wallin
Real Anal. Exchange 25(1): 449-462 (1999/2000).


In this paper we investigate a certain notion of stability, for one function or for iterated function systems, and discuss why this notion can be a good extension and complement to the notion of hyperbolicity. This last notion is very well-known in the literature and plays an important role in the investigation of the dynamical behavior of a system. The main result is that although some classical sets of functions like the stable Lipschitz functions are conjugate to hyperbolic functions there exist continuous stable functions which are not conjugate to hyperbolic functions. A sufficient condition for not being conjugate to a hyperbolic function is given.


Download Citation

Amiran Ambroladze. Klas Markström. Hans Wallin. "Stability Versus Hyperbolicity in Dynamical and Iterated Function Systems." Real Anal. Exchange 25 (1) 449 - 462, 1999/2000.


Published: 1999/2000
First available in Project Euclid: 5 January 2009

zbMATH: 1015.26013
MathSciNet: MR1758901

Primary: 26A18 , 26A45 , 60J05

Keywords: conjugate function , Functions of bounded variation , iterated function system , iteration

Rights: Copyright © 1999 Michigan State University Press

Vol.25 • No. 1 • 1999/2000
Back to Top