Translator Disclaimer
2019 About small eigenvalues of the Witten Laplacian
Laurent Michel
Pure Appl. Anal. 1(2): 149-206 (2019). DOI: 10.2140/paa.2019.1.149

Abstract

We study the low-lying eigenvalues of the semiclassical Witten Laplacian associated to a Morse function  φ . Compared to previous works we allow general distributions of critical values of φ , for instance allowing all the local minima to be absolute. The motivation comes from metastable dynamics described by the Kramers–Smoluchowski equation.

Citation

Download Citation

Laurent Michel. "About small eigenvalues of the Witten Laplacian." Pure Appl. Anal. 1 (2) 149 - 206, 2019. https://doi.org/10.2140/paa.2019.1.149

Information

Received: 31 March 2018; Revised: 4 February 2019; Accepted: 6 March 2019; Published: 2019
First available in Project Euclid: 14 May 2019

zbMATH: 07079477
MathSciNet: MR3949372
Digital Object Identifier: 10.2140/paa.2019.1.149

Subjects:
Primary: 35P20

Keywords: metastability , semiclassical analysis

Rights: Copyright © 2019 Mathematical Sciences Publishers

JOURNAL ARTICLE
58 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.1 • No. 2 • 2019
MSP
Back to Top