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DISPERSIVE ESTIMATES FOR THE WAVE EQUATION ON
RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE

YUANLONG CHEN AND HART F. SMITH

We prove space-time dispersive estimates for solutions to the wave equation on compact Riemannian
manifolds with bounded curvature tensor, where we assume that the metric tensor is of W !-? regularity
for some p > d, which ensures that the curvature tensor is well-defined in the weak sense. The estimates
are established for the same range of Lebesgue and Sobolev exponents that hold in the case of smooth
metrics. Our results are for bounded time intervals, so by finite propagation velocity they hold also on
noncompact manifolds under appropriate uniform geometry conditions.

1. Introduction

We assume throughout this paper that (M, g) is a d-dimensional Riemannian manifold of C! structure
with the following property: there exists ro > 0, Co < 00, and p € (d, 0o] such that for each z € M there
isa C! coordinate chart @ : By, — M, with ®,(0) = z, in which the induced metric g;; on B, C R4
satisfies
gij(0) =36ij. sup|gijllwr.r < Co.
ij

As shown in [Taylor 2000, Chapter 3 §9] or Section 2 of this paper, the Riemannian curvature tensor
components R;;x; are then well-defined as distributions in w—Lp (Br,). We make the assumption that
the R;;x; are measurable functions, and that for some Co uniform over the coordinate charts,

sup |[R;jkzllLoo(B,,) = Co.

ijkl
In Theorem 2.2 we show that the Sobolev spaces H* (M) for —2 < s < 2 defined using local harmonic
coordinates are equivalent to those defined using fractional powers of —A, via the spectral calculus. For
—1 < s < 2 the following Cauchy problem for the wave equation on (M, g) can then be solved using the
spectral decomposition for A, and Duhamel’s formula:

(02 — Apu(t,x) = F(t,x) e L'([-T, T]; H*(M)),
u(0,x) = f(x) e H(M), (1-1)
dru(0,x) = g(x) € H 1 (M).
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In this paper we prove two types of dispersive estimates on the solution u, under the above assumptions
on (M, g). Recall that a triple (s, g, r) with 2 < g, r < oo is said to be admissible for the wave equation if
1 . d_d 1 _d—1/1 1

- z 2 _ <2 (=

q+r 2% qg~ 2(2 r)'

Theorem 1.1 (Strichartz estimates). If (s,q,r) and (1 —s,q,7) are admissible, and r, 7 < 00, then for a

positive T depending only on (M, g), solutions to (1-1) defined using the spectral decomposition of Ag
satisfy

lullLa—1,11;L7 (M) + |l Lo (=1, 11; 55 MYy + 10eu || Loo (=1, 77, 51 (1))
= C(”f”HS(M) + ||g||H-Y*1(M) + ”F”L‘?’([—T,T];LF’(M)))'

Note that under these assumptions 0 < s < 1, and since § > 2 we see that H 3 (M) C L7 (M); hence
FeL\(-T.T); H 3 (M)).

The next estimate is due in the smooth case to Mockenhaupt, Seeger and Sogge [1993]. Here we
consider only the critical exponent g, but similar results with s; <s <2 hold by Sobolev embedding.

Theorem 1.2 (square function estimate). Let g4 = 2(d + 1)/(d — 1), and s4 = 1/q4. Then for a
positive T depending only on (M, g), solutions to (1-1) satisfy

lullzaa ar;L2q-1,1) < CULS NEsa oy + 18 grsa—1ary + WF | Ly o7 17, 11501 (1))

A straightforward consequence of the square function estimate are the following L? — L4 bounds for
unit-width spectral projection operators, which were originally established for smooth metrics in [Sogge
1988].

Corollary 1.3. Suppose that A > 0, and let T1[; 3] denote the L?(M) projection onto the span of
eigenfunctions {¢; } such that —Ay¢; = )sz.qﬁj with Aj € [A, A + 1]. Then for some C depending only on
(M. 2),

Corollary 1.3 is proven for ¢ = g4 from Theorem 1.2, and for ¢ > g it follows by Sobolev embedding.
See [Smith 2006a] for details. It is shown there that the ¢ = oo case, which is related to the spectral
counting remainder estimates of Avakumovié, Levitan and Hérmander, holds more generally on compact
manifolds with metrics g of Lipschitz regularity.

The first version of Strichartz estimates was obtained globally on RZ*+! by Strichartz [1970; 1977]
for s = % and ¢ =r =2(d + 1)/(d — 1). The results were subsequently extended to other values of the
exponents, and to the setting of smooth Riemannian manifolds using a Fourier integral representation of
the fundamental solution. More details can be found in [Sogge 1993; Ginibre and Velo 1997; Keel and
Tao 1998; Lindblad and Sogge 1995]. Of particular interest are the critical indices, when equality holds
in the second admissibility condition.

For a nonsmooth metric g, the standard constructions of the fundamental solution do not work.
However, in [Smith 1998] one of us used paradifferential techniques and wave packet parametrices to
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prove homogeneous Strichartz estimates in dimensions d = 2, 3 under the condition that the metric g
is C11. For all dimensions this is the minimal regularity condition on g in the context of Holder spaces
that implies the Strichartz estimates. Indeed, Smith and Sogge [1994] produced explicit examples of
C 1 metrics for which the homogeneous Strichartz estimates fail, for each 0 < o < 1.

The key idea in handling nonsmooth metrics is to introduce a paradifferential approximation P to
\/—_Ag, in that P2 + A ¢ behaves as a first-order operator on a suitable range of Sobolev spaces. By
energy estimates it then suffices to establish the bounds of Theorems 1.1 and 1.2 when Ay is replaced by
—P?2in (1-1). The operator P has symbol of class S ! 1 and is obtained by mollifying the coefficients of
g over scale 2~ % when acting on functions at frequency scale 2%,

One then seeks a construction of the evolution operator e *¥ for which the desired dispersive bounds
—itP

can be proven. In [Smith 1998], an approximation E(¢) to e was obtained by working in a frame of

dyadic-parabolic wave packets (curvelets). A key property of such wave packets is that the action of e ~/*
on each element of the frame is well approximated by rigid translation of the packet along the Hamiltonian
flow of P, and E (t) was defined as this rigid motion. This operator E(¢) failed to satisfy the unitary group
property E(t) E(s)* = E(t—s), however, which is a crucial requirement for the established proofs of disper-
sive bounds such as in [Keel and Tao 1998]. This limited the results of [Smith 1998] to low dimensions. The
Strichartz estimates of Theorem 1.1 for C ! metrics and general dimensions were subsequently established
by Tataru [2000; 2001; 2002], where space-time bounds on the FBI transform were used. Smith [2006b]
used a modified FBI transform to translate the problem to phase-space, and e~/*F was approximated
on the transform side by the Hamiltonian flow map. This forms a unitary group, and the estimates in
Theorems 1.1 and 1.2 (with F = 0 in Theorem 1.1) were established for C ! metrics, in all dimensions.

For metrics of bounded curvature the paradifferential construction of the self-adjoint operator P goes
through as above, provided one works in harmonic coordinates on (M, g). In such coordinates the metric g
has second derivatives belonging to BMO, which is sufficient to show that P2 + Ag maps H® — H* -1
for a range of s. The wave packet methods fail to give a useful construction of e ~//F, however, since the
error estimates for the rigid translation or Hamiltonian flow approximations depend explicitly on pointwise
bounds on 32g” (x). On the other hand, by the Jacobi variation formula, Z° bounds on the Riemannian
curvature tensor imply that the geodesic and Hamiltonian flows are bilipschitz. A consequence is that the
solution to the eikonal equation in any local harmonic coordinate system has bounded second derivatives,
the same regularity as for C !*! metrics.

This naturally leads us in this paper to imitate the Lax parametrix construction for e “*/F_ Tt turns out
that solving the transport equations for the amplitude produces no further improvement beyond setting the
amplitude to be identically 1, as all terms in the expansion of the amplitude would be symbols of order 0,
due to the fact that the symbol of P is of class S 11 1- On the other hand, to have a unitary group we
need work with the exact operator e 7//P. We achieve this by producing e ~*F exactly as an iterative
expansion of the Lax approximation, which we show converges uniformly on finite time intervals in the
H? operator norm for every s € R.

To prove the dispersive estimates of Theorems 1.1 and 1.2 we establish bounds on the integral kernel

of e~*P localized dyadically in frequency. These bounds capture the pointwise decay of the fundamental
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solution away from the light cone, and are of the exact same form as for smooth metrics. An advantage
of this proof is that we can obtain the inhomogeneous estimates stated in Theorem 1.1. We establish the
kernel bounds using a version of the wave packet frame of [Smith 1998] rescaled by time ¢. This method
is well adapted to handle the multiple products arising in the iterative expression for e *, since the
bounds can be phrased in terms of operator bounds in certain weighted norm spaces.

The proof of Theorems 1.1 and 1.2 is composed of multiple distinct steps, and we divide it up into
sections as follows. A more detailed summary of each section is included at its beginning.

In Section 2, we present the details of harmonic coordinates on (M, g) and the regularity results for g in
such coordinates. The procedure is similar to that in [Taylor 2000, Chapter 3, §9]. We then reduce matters
to working with a compact perturbation of the Euclidean metric on R4, We introduce the paradifferential
operator approximation P, and equate the estimates of Theorems 1.1 and 1.2 to Lebesgue space mapping
properties for e 7P

In Section 3, we use the Jacobi variation formula to study the regularity of the geodesic flow for the
metric g that is obtained by mollifying g at scale 2=5. The estimates on the derivatives of the geodesic
flow are exactly those obtained in the case g € C 'L,

In Section 4, we use the results derived in Section 3 and a dilation argument to prove symbol-type
estimates on the solution gy (¢, x, ) of the eikonal equation for g;. A key result is obtaining better estimates
for small ¢, which is crucial to proving the dispersive estimates on the kernel of e 7//F when |¢| <« 1.
—itP

In Section 5, we introduce an approximation W(¢) to e , Which is a sum over k of terms

/ el ek @)y () f (n) d,

W)@ = g

where ¥ is a Littlewood—Paley partition of unity. We show that

0 +iP) (Wi (1) f) = Bie (1) /.,

where By (¢) is an oscillatory integral operator with phase ¢y, and symbol by (¢, x, n) of order O that
satisfies derivative bounds similar to those for ¢y..

Section 6 is concerned with energy flow properties of iterated compositions of W(t) and B(¢), which
arise in the expansion of e~/*F. In particular, we show that multiple compositions preserve dyadic
localization in frequency up to smoothing errors. Thus, in proving dispersive estimates for e ~/*f we need
only handle the composition of terms Wy and By, all of which are localized at the same dyadic scale. We
also prove “sideways” energy estimates that arise in the proof of Theorem 1.2.

In Section 7 we prove that, for small ¢, the kernel Kj (¢, x, y) of e “*F (D) satisfies, modulo a

smoothing operator, the same bounds as for smooth metrics:
|Kie(t,x, 9)| < Cw 284(1 4 2512)) =" (1 4+ 2K dise(x, S0 () Y,

where S¢(y) is the geodesic sphere centered at y and dist( -, - ) the geodesic distance for gj. Together with
standard arguments, these estimates yield Theorems 1.1 and 1.2. The proof of this estimate proceeds, for
a given value of 7, by representing e /Py (D) in a wave packet frame that is obtained by scaling by |¢|
the dyadic-parabolic frame from [Smith 1998]. The kernel estimates follow by showing that the operator
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e~ 1Py (D) maps a frame element at time 0 to a similar function translated along the Hamiltonian flow
through its center. This fact is deduced from showing the same result for the terms Wy (s) and By (s) for

0 < s < that arise in the iterative formula for e /%,

2. Preliminaries and reduction to the model operator

In this section we establish regularity estimates for the metric g in local harmonic coordinate charts. We
then consider Sobolev spaces on M, and define the wave group for \/—_Ag using the orthonormal basis
for L2(M) consisting of eigenfunctions of A g- We conclude by reducing the proof of Theorem 1.1 to
estimates for the evolution group e /¥ of the self-adjoint first-order pseudodifferential operator P on RY,
where P is an extension to R of a paradifferential approximation to «/—_Ag in one of a finite cover
by M of local harmonic coordinate charts.

Harmonic coordinates on (M, g). We start with the assumption that (M, g) is a Riemannian manifold
of C! structure with the following condition: there exists ro > 0, Co < 00, and p € (d, 0o], and for each
z € M a coordinate chart ®; : B,, - M, with ®,(0) = z, so that the induced metric g on B,, C R4
satisfies
gij(0) =6ij,  sup|igijllwi.r < Co.
ij
Since W17 functions are of Holder regularity 1 — % > 0, by shrinking ry if needed we may additionally
assume that, given cg > 0 to be determined,
sup |gjj(x) =8| < co.
xEBr0

Following [Taylor 2000, Chapter 3 §9], in particular Chapter 3, Proposition 9.1 and the comments
following Chapter 3, (9.39) in that paper, after replacing ro by po = po(d, p, Co, co), we may assume
that the induced coordinate functions, fzi : ®;(By,) — R, are harmonic functions with respect to the
Laplace—Beltrami operator of g, and that overlapping harmonic coordinate charts have transition functions
of regularity W27 on their overlaps. The harmonic coordinates are related to the coordinate functions of
®, by a W2:P change of coordinates over By, and it follows that the original coordinates were necessarily
of regularity W2? c C 115 on their overlaps. Consequently, M is a manifold with W22 structure.
This is consistent with the fact that a metric g maintains its W 7 regularity under a W2-? change of
coordinates, which can be seen by (2-1) below.

For every integer m > 0, there is a continuous linear extension operator of W"?(B,) to WP (R9);
see, e.g., [Stein 1970, Chapter VI, §3, Theorem 5]. We may thus apply [Taylor 2000, Chapter 2,
Proposition 1.1], together with the inclusions

2
whr R CcLO®Y. H'@®Y) =W @) c L2 ®Y),
to see that the following hold, both on R? and Byy:

Ifglwrr = Clflwrrliglwre, 18l = Clflwrrligler- 2-1
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The Riemannian curvature tensor R for g is given in coordinates by

| Pgie | Pge P P
ikl =3 Oxj 0xg  Ox; Oxp  0xj dxg  0x; dxg

]+ Q(g, 0g),

where Q(g, dg) is a quadratic form in first-order derivatives of g;;, with coefficients given by a combination
of coefficients of g; hence Q(g, dg) € L% when g€ WLP with p > d. Then R is defined as a distribution,
and our key assumption is that R;;; is a bounded measurable function such that uniformly in the local
coordinates F,

sup [RjjkillzeeB,,) = Co.

ijkl
This is implied by assuming that R is a measurable function, together with the geometric condition that
for all continuous vector fields v;,

[{(R(v1,v2)v3,va) Loy < Co  if [|g(vj)|lLooary < 1.

In harmonic coordinates, the Ricci tensor Ric can be written, see for example [DeTurck and Kazdan
1981], in the form

Ricij = Y O, (€™ O, 2ij) + Q(g. 92).
mn

Since Ric;; € L*°(B,,), following [Taylor 2000, Chapter 3, §10] we conclude g;; € w24 (B)) for all
p < po and all g < oo; hence g;; € Lip(B.gp,).

Take ¢ € C°(B.gp,) With ¢ =1 on B 7,,, and y € CZ°(B.gp,) With y = 1 on B g,,, and assume ¢
and y take values in [0, 1].

We form a Riemannian metric g;; = ¢ g;; + (1 —¢)3;; on R, and uniformly elliptic coefficients
a/ = y g/ +(1—x)8 on R¥. Note that Q(g, dg) € L*(B.gp,) since g € Lip(B.9p,). Then the following
holds globally on R4

d
Z Ox,, (@™" 0x,8ij) € L.
m,n=1

Since the a™" are globally Lipschitz, from [Taylor 2000, Chapter 3, Proposition 10.3] we conclude that
928 € BMO,(R?); more precisely 928,/ belongs to BMO(R?) and is supported in B 3p0-

Note that the Riemannian curvature tensor R of g belongs to L2° (R?), where we use that § is Lipschitz,
soR = ¢R modulo products of g and dxg and functions in CZ°(B.gp,). After shrinking pg by a factor
of 2, we conclude:

Lemma 2.1. Given cg > 0, there exists pg > 0 and Co < 00 so that for each z € M there is a harmonic
coordinate chart ®; : Bpy — M, with ®,(0) = z, such that the induced metric on By, agrees with the
restriction of a metric g defined on R? that satisfies g; ;= 0ij if |x| > 2po, and

2
0% gijllBMo + [lgij ILip + IR;jkillLoe < Co,  llgij — dijllLee < co.

In particular, g;j — 8;; belongs to Wcz’q([R{d)for all g < oo.



DISPERSIVE ESTIMATES FOR THE WAVE EQUATION ON RIEMANNIAN MANIFOLDS 107

We now cover M by a finite collection of harmonic coordinate charts ®; = &, : By, — M, each
of which satisfies the conditions of Lemma 2.1, such that there is a partition of unity y; on M with
supp(y;) C ®; (B%po) and xj o ®; € W2P(B,,) for each i, j. In particular, ;o ®; € Wcz’p(Bpo).

By (2-1), multiplication by y; o ®; maps H;} (B,) into Hf(B,,) for s = 0,1, 2. By interpolation
this holds for 0 <s < 2. We may then introduce Sobolev spaces H*(M) C L2(M ), for 0 <s <2, by the
condition

feH (M) < fo®;eH;.(By) forall j,

L lasany = Y NG ) © @) s ay- (2-2)
j

If g € H(B),) then
1(xj-go @) o®)las < Cliglas

for C depending on the support of g. This holds for s = 0, 1 since CI>l-_1 o®;isal 1 diffeomorphism. It
holds for s = 2 since D(®; ! o ®;) € W7 is a multiplier on H'! by (2-1). It then holds by interpolation
for 0 < s < 2. Consequently, there are natural continuous inclusions HJ(Bp,) — H*(M) for 0 <s <2
given by g — go de_l, and one may identify H*(M) with a closed subspace of the finite direct sum
over j of H%(By,).

An element of (H*)* thus induces an element of H_*(B),), and if we identify H (M) with (H*)*
for 0 < s <2, then the condition (2-2) holds for —2 < s < 2, with approximate equality for the norm.

We observe here the following regularity property for Ag in harmonic coordinates, which follows,
for example, from [Gilbarg and Trudinger 1983, Theorem 8.9]. Suppose that u € H!(B,,) is a weak

solution to Agu = f, where f € L?(Bp,). Then u € H?(B,) for all p < pg, and

lullg2(s,) < Co (ull (s, + 1./ L28,,))- (2-3)

The Sobolev spaces for |s| < 2 can also be characterized using the spectral decomposition of A, on
L?(M). Consider the quadratic form on H (M) given by

Q(u,v)=—/12(Agv) dmg=/g(d12,dv) dms.

Then Q is symmetric, nonnegative, and coercive. By the Rellich compactness theorem there is a complete
orthonormal basis {v;} of L?(M, d m,) that diagonalizes Q, in that for f, g € H LM

0(£.0)= Y 25D e (g). c/'(f)=/Mt7j 1 dm,
J

and 0 = A9 < Ay <--- is a sequence of real numbers converging to co. The v; are weak solutions in
HY(M) to —Agv; = )\12- v;; hence (2-3) gives ||vj | g2y < C ka.. It follows that ¢; (/') can be defined
for f € H®(M) when —2 < s <0 as the action of f on v;.

The operator (1 — A,) is equivalent to multiplication by (1 + )tjz.) in the basis {v; }, and the following
theorem then gives a more natural definition of H*(M).
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Theorem 2.2. For —2 < s <2, the mapping f — {c; (f)}joi0 defines a homeomorphism of H® (M) with
the space £ (N, (1 + )&Jz-)s ). In particular, uniformly over —2 <s <2, we have

1 Vrsany ~ A+l DR (N = [ £ dmg.
j=0 M

and Zjo'io ¢j(f)v; converges to f in the topology of H*(M).

Proof. The theorem holds for s = 0 by orthonormality, and for s = 1 since || f ”%11 ~|f ||%2 +0(f, ).
For s = 2, we note that the partial sums

N N N
Do c(I=89 )y =Y 1+ (v =1=8g) Y ¢ ()
j=0 j=0 j=0
converge in L?(M) to (1 — Ao fif feH 2(M). 1t follows by elliptic regularity that > ¢ () v
converges in H?(M) to f. Surjectivity onto £2(N, (1 + /\JZ.)Z) follows similarly. The theorem follows for
0 < s <2 by interpolation, and for —2 < s < 0 by duality. O

We note that the proof also shows that —A, conjugates to multiplication by {)LJZ.} in the basis {v;}, as
a map from H*(M) — H* 2(M), provided 0 < s < 2.

The wave equation on (M, g). For data (f,g) € L>(M)® H™'(M) and F € L}([-T, T]; H"2(M))
we define the solution of the Cauchy problem (1-1) to be

o0

t
u(t,x) = Z(cos(t)tj)cj(f)—i—)tj_lsin(t)tj)cj(g)—l—/o x;lsin((z—s)/\j)cj(F(s,.)))vj(x), (2-4)

Jj=0

where we set 07! sin(0¢) = . We show here that Theorem 1.1 can be deduced from the following
assertion:

Assume that u € CO(HS(M)) N CY(H*~Y(M)), and that u is given by (2-4). Then for s.q.q.,r,F as in
Theorem 1.1, the following estimate holds:
Il g =71 (ayy < € (Ilu ||L?°([—T,T];HS(M))+||atu”L;’o([—T,T];HS—l(M))"‘“F”Lté’([_T,T];Lf/(M)))-

To see that this result implies Theorem 1.1, consider first the case ' = 0. Then by the spectral
representation of ¥ we have

lullLoo (-1, 7185 a)) + 1002l oo (111 55—1 0y = LS sy + €l s—1 (any -
and Theorem 1.1 follows from the assertion. We apply this to the triple (1 —s, ¢, 7) and use duality to see
that, when f = g =0,

hellzgeq-r. sy + 10eullLee rryms—r ey = CUF I o (_p 1.0 -

The continuity of u and d;u follows by translation continuity, and Theorem 1.1 then follows from the
assertion for the case F # 0.
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As a result we may assume that
ue COHS(M)NCYH*"Y(M))NC?(H*2(M)),

and in particular, 2u = Au in the weak sense on B, in each of the local harmonic coordinate charts ®; .

If the data (f, g, F) is localized in ®; (B 1 ) then finite propagation velocity shows that u(¢) is
supported in ®; (Bz o) if 7] = 6,00, where We use W?2:P regularity of g for all p < oo, and closeness of
gij to §;; for co small

Using the partition of unity y;, we can reduce the proof of Theorem 1.1 to the case that the Cauchy
data is supported in ®; (81 ) and thus work on R with a metric satisfying the conditions of Lemma 2.1.
After rescaling space and tlme by a factor R > 1, where R™!Cy < ¢4, we can reduce Theorems 1.1
and 1.2 with T = %R 1po to the following Theorem 2.3. The constant c; will be fixed depending only
on the dimension, and in particular will be small enough to rule out conjugate points for |¢| < 1.

Theorem 2.3. Assume g is a Riemannian metric on R? such that for a prescribed constant c; depending
on the dimension d ,

2
IR;jkillLoe + [lgij —8ijllLip + 19%&ijlIBMO < ¢q4.-

Assume that (s,q,r) and (1 —s,§, 7) are admissible with r, 7 < 0o, and let u € C°([0, 1]; HS(R%)) N
C1([0,1]; HS~Y(R?)) be a weak solution to

07 —Au=F, u(0,-)=f du@,)=¢g
Then there is a constant C < 00, depending only on d, so that
lull Lo o, 13:2r ®ayy < C (Il oo o, 11 s wayy + 1821l Loo o, 13: 251 ety + 1F | L qo.17:7 @ey))-
Ifqga =2(d+1)/(d —1)and s = s4 = q;', then
vl zea ®a;z2q0,11) < C (1S lrsa way + 18l gsa—1 ey + 1 F i o.13: 1501 @ay))-

The model operator P. We construct here the paradifferential approximation to «/—_Ag, where we will
assume that g is a metric on R that satisfies the conditions of Theorem 2.3.

We fix a family of dyadically supported functions B (£) for k > 0 such that B (£) = 1 (217%¢) if
k > 1, and such that v (§) = Bi (§)? gives a Littlewood—Paley partition of unity. We will assume that

supp(B1) C {35 < €< B}, Bo®)+ ) (6’ =

k=1

We introduce a family of metrics g (x) that are mollifications of g(x) on spatial scale 275, Precisely, fix
a radial function y € C2°(Bj) so that

/)((x)dle, /x“)((x)dxzo if 1 <Ja|<3.
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For k > 1 define a smooth metric gz on R? by
ij vy — 052 £ i (vyd
(g)7 (x) =272 [ x(22(x—y)) g’ (y) dy.

From the conditions on g in Theorem 2.3 it follows that ||gz —I||Lip < cg. Also,

”axgk ||L°°§Ca{215(|ﬂ|_2)’ |/3|23

The estimate for || = 2 holds when k = 1 since 32(y * g) = (dxx) * (dxg). For k > 2 we use that
)((2% ) —x(-)is an H'-atom, and 92g € BMO([Rd) The estimate for || > 3 follows by writing

98 (g0)/ (x) = 25@+B1-2 f @82 025 (x — )P (1) dy.

and using that 89 Y x is an H!-atom, with norm Cy, when |0] > 1.
We also note here the bound

_ 1
192 (g — gr—1)llLoo < Cp27* 2Pk, (2-5)
For this, write

1E) - 2228) = |Ep(6).  peSR?), p(0) =0.
Then, setting pi (§) = p(Z_%S), we have

g — 21 = 2% pr * (Ag).

The bound (2-5) then follows from [Stein 1993, IV.1.1.4] as above.
Many of the steps in subsequent estimates use only the weaker estimates that follow from the Lipschitz
bounds on g,

2 e It Bl =1, 2-6
108gy I < Ca 251BI-D 18] > 2. oo

1
Define py(x,§) = (Zl =1 g (x) & Ej) 2, so that pg(x, £) is homogeneous of degree 1 in &. Then by
(2-6) and the conditions of Theorem 2.3

| (x. &) = |§]] + 10x pre (x. §)| =< cqlE].

max 2-7)
19208 pr (x. £)| < Cy 523 ™ OIBI=D fg)1-lel,

Hence, aﬁ Pr(x, &)Y (§) € S 11 1 » uniformly over k > 1, if || < 1. Similarly, by (2-5) we see that
2

(Pr+1— Pr)Vr € S?,% uniformly over k. (2-8)

Define

P =/30<D>2+%Z B(D) (pic(x, D) + pi(x. D)) Bic(D),
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and let p(x,£) be the symbol of P. Then P is self-adjoint, and the S, 1 pseudodifferential calculus
shows that

PEE) =Y (e HYi(®) € 57 .
k=1
In particular,

#pe Sll,% for |B] < 1.

We note for future use that the Garding inequality for P follows easily. It can be verified by letting
co }
b(x,§) = (wo(e-) +> pk<x,s>wk<5)) :
k=1

Then b(x, D)*b(x,D)— P € Op(Sﬁ%); hence for f € H%, and some real Cyq
(Pf.f) = =Ci | £ (2:9)
Lemma 2.4. The following holds for 0 < s < 2:
1P?u + Agu gs—1gay < C l[ull s ay-

Proof. By (2-7), we deduce that 85 Pr(x,6)Br(§) € Sl1 , for |B| < 1, with uniform bounds over k.
Furthermore, By has disjoint support from 8; if |j — k| 1. The composition calculus, together with
(2-8), thus shows that

00 d
P2 = Z( Z g;cj (x)DiDj)wk(D) +r(x,D), r(x,§e Sll’%,
k=0 “i,j=1
and in particular r(x, D) : H* — H*~! for all 5. We next write
d
P _l l P
—Ag= Y ¢/ (x)D;D; +det(g)”2(D;(det(g)? g/)) D;.
ij=1
By (2-1) we see that det(g)_%(D,- (det(g)% g"/)) € WP is a multiplier on H® for |s| < 1, so the second

term maps HS > H 1for0<s<2.

We thus need to establish that, for each i, j, we have

<Clullgs if —1<s<lI. (2-10)
HS

> (@Y (x) — g ()i (D) Dju
k=0

By the vanishing moment condition on the radial function y € C2°, we can write

min(1, |§]271¢), jg] <1,

1= 2©) = [EPh().  where [1*h(©)| < Ca {|§|_2_|0,|, 1

For j, k>0, welet h;;(§) = v, (&)h(2_§$) and then have

|08 hj 1 (8)] < Cu27 P/ 7Kl o=l (2-11)
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That is, {22/ k‘h k}°° o satisfies the derivative estimates and localization properties of a Littlewood—
Paley partition of unity in j, uniformly over k. We then write

o0
g-g =27 "gix. whereg;r =—Q2m) " hjr*(Ag).
j=0
We observe that

supp(g %) C 2771 < |E] <2772, |lgjxllLee <2712 7K,

For the second estimate we use that ||fzj’k * (Ag)||pee < C 212/ k] IAg|lsmo. This follows for j # 0
from dilation invariance of BMO and the bound

/hj,k(x) dx =0, |hjx(x)| < C 27127 2inq 427 x1,

See for example [Stein 1993, IV.1.1.4]. For j = 0 we write gg = (Vﬁo,k) *(Vg).
If j <k —1, the function g; x ¥ (D )u has Fourier transform supported in (2k=1 < |g| < 2k+2} 50
we can use orthogonality to estimate the corresponding terms in (2-10) over j <k — 1,

oo k—2

Yoy ok g,kvfk(D)Du <C)y Zz g,kvfk(D)Du
k=0j=0 H* k=0"j=0 Hs

2
(Zz 24Dl

=<C

IWk(D)ull s < Clullgs.

If j >k + 1, then g; ¥, (D)u is frequency supported in {2771 < |g] < 2/%2}, and we estimate the
corresponding terms in (2-10) over j > k + 1,

2: 2: z &k¢kUUD“ <> > 27¥gi vk (D) Du ||y

k=0 j=k+2 k=0 j=k+2
o0 o0 )
<C Y Y 2| g (D) Dul g
k=0 j=k+2
o0 o0 )
<C > > KOHED y (Dyul|gs
k=0 j=k+2

oo
<C Y 2 ¥ YDl < Clullg.
k=0

It remains to handle the case |j — k| < 1. For this, we note that, by (2-11), the function a(§) :=
2k ZI k| <17k (§) satisfies the properties of a Littlewood-Paley partition of unity, as does the function
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2 %y (D) D := Y3 (D). We then rewrite the remaining terms in (2-10) as

> 27 M@k (D) Ag) (i (D))

k=0 H?
For —1 <5 <0, we can dominate this using the inequality
oo
> (@ (D)A) T P (Dyw)| = CliAghsmollull -1 (2-12)
L

k=0
This inequality is a discrete version of Theorem 33 of [Coifman and Meyer 1978]; for completeness we
sketch the proof here. The key estimate is that

o
dp=") (ar(D)Ag)(x)|dx 8,x (1)
k=0
is a Carleson measure, and ||dul|l¢c < C ||Ag||]23MO. This follows from the proof of [Stein 1993, IV.4.3,
(37)], which goes through using that {ay (2 €))7~ is a uniformly bounded set in CC°°(% <&/ <8). To
verify (2-12) we test the left-hand side against 4 € L2(R%). Fix a Schwartz function ¢ with ¢(§) = 1 for
|€] < 8. Then since (ax (D)Ag) (Y (D)u) is frequency supported in || < 2513, we have

‘ [ @Dape i dx
k=0

= ' | X @CFD)b @ (D)ag) @i (D) dx
k=0

< ([ X et o iacpaer ax) ([ 3 12t ol ax)
k=0 k=0

By a result of [Carleson 1962], see [Stein 1993, 11.2.2, Theorem 2 and 11.2.4, (24)], the penultimate term
is dominated by

1
IRll2lldpllé = CllhlL2 ]| Aglsmo.

and by orthogonality the last term is dominated by ||u|| g—1.
For s > 0, we use the frequency support of (ax(D)Ag) (Y (D)u) to bound

o0

< D2 V)@ (D)AY T (D)) .2

HS  r—o

Y 27 (ar (D) Ag) (Y (D)u)
k=0

o
<C Y 256D Agllavioll i (D)ul 2
k=0

o0
<C Y 27| Agllemoll Vi (D)u s
k=0

< C|Agllsmollullas- O
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Reduction to a first-order equation. Write (0?4 P?)u = F +G, where G = (P2 +A ¢)u. By Lemma 2.4,

IG | Loo 0,13 5-1 )y = CllullLoo (0,11 55 ®e))-

If v solves (0% + P2)v = G with Cauchy data set to 0, then by the Duhamel formula and energy estimates
we can deduce

lollzapr +IvllLeems +19:0ll oo grs—1 = CllullLeops.

provided that we prove homogeneous Strichartz estimates for 32 + P2 By splitting u = v + (u —v), the
Strichartz estimates of Theorem 2.3 can thus be reduced to the same estimates with —A, replaced by P2,
that is, by proving that the following holds on [0, 1] x R¥, provided u € C°HS N C1HS~!:

el gz = € (lellge g + 190l o et + 102 + P2l g7, )- (2-13)
We replace u(z,-) by (D)™ u(t,-), where (D) = (1 — A)%, and note that
(37 + P?)(D)*u=[P?% (D) "*lu+ (D)% (37 + P*)u.

The S, 1 calculus shows that [P2, (D)™%] € S1 , where we also use that dx p(x,§) € S1 . Conse-
quently, using Duhamel’s principle as above we See that (2-13) is equivalent to showing that for u €
C°L2NCYHL, we have

D) ullygry < € (Iullggerz + 130wl ze gt + (D) @F + PPl ).
By (2-9), with © = 1 4+ C; we have

(P+wf ) ZIflf: = 1P+ fl2=1fllL> when feH.

By elliptic estimates we have |[(P + ) f | L2rad) = ||f||H1(Rd), consequently (P + u)~! exists as a
map from L2(®R?) — H'(R?). One can show that (P + w) e Op(S1 1) for example by [Bony 1997].
Note that since (P 4+ )% — P2 € Op(S1 1 ), the estlmate remains unchanged if we replace P by P + u.
We will therefore assume P is invertible, w1th P le Op(S1 1)
The remainder of this paper is devoted to constructing the exact evolution group E(t) = exp(—itP) for
the self-adjoint operator P, and proving dispersive estimates for its kernel. The group E(¢) will satisfy
following properties:

e E(t) is a strongly continuous 1-parameter unitary group on L2(R%).

e E(t) is strongly continuous with respect to £ on H*(R?) for all s € R.

e 3;E(t) is strongly continuous with respect to ¢ from H*(R%) into HS~1(R?) for all s € R.
e EO)f = f,and 3; E(t) f = —iPE(t) f = —iE@)Pf if f € H*(R?) for some s € R.

The second and third conditions imply that E(7) f € CO(H*)NCY(HS 1) if f € HS(R?). For s <0
we understand this to mean that E () extends continuously to such an operator from L2(R?). It follows
from the third and fourth conditions that E(¢) f € C/(H*~/) for all s € R and all j € N. We now let

C(t)=3(E@) + E(=1), St)=5(E@t)—E(=)P™".
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The solution u to the Cauchy problem with Sobolev data
@7 +PHu=F,  u0=f du0)=g.

is then given by
t

u(t) =C(t)f+S(t)g+/0 S(t—s)F(s)ds.

The Strichartz estimates in Theorem 2.3 are thus reduced to showing that, for s, g, g, r, 7 as in the statement
of Theorem 1.1,

KDY E() f g L qo.n1xdy < C 1L 2oy
H(D)—S/t E(Z_S)F(S ) <C||(D>1—SF|| o (2-14)
0 ’ = L7 L7 ([0.1]xRd)"

L?L%([0,1]xR4)

Here we have used that (D)!~5 P~1(D)" is bounded on L7 (R?) since itis a Calderén—Zygmund operator.
Similar steps apply to the square function estimate. For that estimate it will be more convenient to

work with smooth cutoffs of the solution. We fix ¢ € C2°((—1.1)) with ¢(1) = 1if || < 1. By energy
conservation, the square function estimates of Theorem 2.3 are then reduced to showing
”¢(t)<D)_Sd E@)f ”de L2(R4 x[0,1]) <C|f ||L2(Rd)' (2-15)

3. Regularity of the geodesic and Hamiltonian flows

In this section we establish estimates for derivatives of all orders on the geodesic and Hamiltonian flows of
the metrics gz, as well as for spatial dilates g (e - ) for e < 1. To operate in a general context we will consider
a family of metrics gaps on R4 that satisfy derivative estimates depending on the parameter M € [1, c0).

For a sufficiently small constant c; to be chosen depending only on the dimension d, we will assume
a smallness condition,

IR;jkrllLoe + 1(gan)ij — 8ijlluip + I VZ(2m)ij Mo < €4 (3-1)

Here, R;j; is the Riemann curvature tensor of gps. This tensor, as well as the Christoffel symbols I'}",
depends on M, but to simplify notation we suppress the subscript M.
We additionally assume that, for constants Cg independent of M,

|08 gy llLoe < Cg MIBIY 1B > 1, (3-2)
18R, ;a1 llLe < Cp MPI 18] > 0. (3-3)
Let y(¢, y, w) be the geodesic for gps with initial conditions (y, w):

2y = "Th . yOywy =y, 70 y.w) =w,
ij

where y = d;y. Note that by (3-1)—(3-2) we have
T/l Scas 135Th e < Cp MPL 11 = 1, (3-4)

x-ij

where in this section @ < b means that a < Ch, where C depends only on the dimension d .
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Theorem 3.1. Suppose that gy satisfies (3-1)—(3-3) for a suitably small constant cg. Then there are
constants Cy g, depending only on the constants Cg in (3-2)—(3-3), so that over the set % <|w| <2 and
it <1,

10yy =1+ [0yy| + 10wy =1 Sca, [dwy —t1] Scqltl, (3-5)
and

1089% y (2, y, w)| + 10802 7 (t, y. w)| < Cup ML o] 4 || > 1.

Additionally,
8‘33 Wyt y,w)| < Cq (| MBI 16 > 1 0r |B] > 2.
B

Proof. We produce a (not necessarlly orthonormal) frame {Vm} —; along y(z, y, w) by parallel translation
of the standard frame {8,,,} . We label the resulting vector fields Vi, (¢, y, w) =), vl (¢, y, w)0y.
The dual frame {V”} -1 under gum is obtained by parallel translating ), g7 (y)am along v, so

v, Y, w) = Z ey (y)vm (z, y, w), and derivative estimates for the functions v” L will follow directly
from those for v . We have

vy = =Tl ()7 vhs v (0,1,w) =8, (3-6)
We expand the variation of the flow in the initial parameters using the frame

yw—Zﬁa%wm—Z@axwwawm,
(3-7
kY = th(t Y, w)Vy = Zh (t.y. w)vi (. y, w)o;.
By (3-6) we then have

Ak p" = 0r 0k y" = Z(a,fk’")v ZF (V) y fk

(3-8)
0y 7" = 010,k y" E:G?hmh) }:I‘(y)thvf

Since thayk Y= m (02 ) Vi, with Dy covariant differentiation in 7, the Jacobi variation formula
yields

ﬁ$=ZXZmWWWM%%ﬁﬁ, (3-9)

n Njlp

with the following initial conditions, where the second holds by (3-8):

S0, y,w) =87, 3 /0,y w) = Zr@m

Equation (3-9) holds with f replaced by 4, with initial conditions

h7 0, y,w) =0, 09h0,y, w)=25;".
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The bounds |y| < 1 and |v| < 1, together with (3-4), yield for |¢| <1,
[vi =871+ 1/ =8 I+ 10: f" | +10chy = 8" < can hy — 187 < calt].

Together with (3-4) and (3-7)—(3-8), these yield the bound (3-5).
Assume we have shown the following for || + || < N — 1, where N > 1:

1080% 7, £ 0| + 10502, (0, S, 0 hf)| < Cop MI#IHIAL (3-10)
Using (3-7), (3-4), and (3-8), we conclude that if 1 < |a|+|8] < N,
10892 y"| + [080%y"| < Cyp MI*IHIAITT,

By (3-6) and the Leibniz rule, for |«| 4+ || = N we then can write

3;358%1);’" = —I‘lf’j (y))}iaga%vrjr'l + O(MeIFIBly,

Similarly, by (3-9), for || + || = N we have
070005 1" = Z(Z Ri,-zp(y>y"'v,{y"v'"”’) 905 fi' + o=+
n “jlp
and the same for f replaced by 4. By the initial conditions, we have
B, IO, _y =0, 10:080% £"(0, y, w)| < Co g M¥IFIFL,
An application of Gronwall’s lemma then yields, for |«| + || = N,
|95 0% oy S W] 419585 00 /37 e )| < Corjp MI*HIPL,

and (3-10) follows for |a| + || = N by (3-7) and (3-8), and hence all &, 8 by induction. As above, this
implies the desired bounds for aﬁ 0% (v, 7).

The last estimate of the theorem follows from the bound on |9, 85 0%, |, since aff 0570, y,w)=0if
either |e| > 1 or |B] > 2. O

We now consider the related Hamiltonian flow. Let
1

. 2
pm(x,n) = (Z g;{,[(x)fliﬂj) ,
ij
and consider the solution (x(z, y, ), £(¢, ¥, n)) to Hamilton’s equations
i=Vep)x.§).  E=-Vap)®.6).  xO.y.m)=y. §O.y.)=0n.
These are related to the geodesic flow by

Xty =y y.wy.m),

E.y.m=pu(r.m Y emij () ¥ . y. w(y.n).
J
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where

winm = (y - ZgM(y) -

It follows from (3-1) that
10yw| 4+ |w—[n|~"n| + |[dqw — A= 0| *n®@n)| S ca.
and from (3-2) and homogeneity that
|85 95w (y, | < Cap M 1o,

Observe that I — || =21 ® 7 is equal to IT, the projection onto the plane perpendicular to 7. We use this
to deduce the following corollary of Theorem 3.1.

Corollary 3.2. Suppose that gy satisfies (3-1)—(3-3) for a suitably small constant cg. Then there are
constants Cy, g, depending only on the constants Cg in (3-2)—~(3-3), so that for |t| < 1

0yx =1+ (056 1| Sca. [0yl +1E—nl Scalnl. [8px—1 T Seq ltl,
and when |a| + |B| +m > 1,

n|10%08 7 x (¢, y. )| + 920807 & (1. y. )| < Cq p MI*IHIBIFm=1 1=led,

Additionally,
1089%x (¢, y, m)| < Cqp lt| MIHIPI=L 1=l > 107 |B] > 2.

Proof. The estimates other than those involving derivatives in ¢ follow from Theorem 3.1. Estimates on
derivatives in ¢ follow by induction using Hamilton’s equations and the following consequence of (3-2):

10802 (Ve pan)| + €708 0% (Vi pan)| < Cop M1 |71, -

For the generating function ¢ (¢, x, 1), we need to consider the function y(z, x, ) that is the inverse
of the map y — x(¢, y, n).

Theorem 3.3. Suppose that gy satisfies (3-1)—(3-3) for a suitably small constant cg. Then there are
constants Cy g, depending only on the constants Cg in (3-2)~(3-3), so that if |t| < 1 and n # 0, the map
y — x(t, y,n) is invertible. The inverse map y(t,x,n) satisfies |0xy —1| < cg, and

10802 y(1.x. )| < Cqp MI*HBIL 1 =lel ] 1] > 1.
Additionally,

10802y (t, x, )| < Cqp lt| MHIPI=L 17l > 107 |B] = 2.
Also, for the function £(t, x,n) :=E(t, y(¢, x,n),n),
10802 (1, x, )| < Cop MIHIBIZ 1=l g 18] > 1.
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Proof. We have |x (¢, y,n) — y| < |t], so for each n # 0 and |¢| < 1 the map y — x is proper and hence
a closed mapping. Since |dyx —I| < ¢g4, it is an open mapping, and hence onto and one-to-one by
connectivity and simple connectivity of R%. Thus y — x (¢, y, 1) is a diffeomorphism of R?, with inverse
satisfying |05y —I| < ¢g. The estimates of the theorem are then a consequence of the inverse function
theorem and Corollary 3.2. O

4. Estimates for solutions of the eikonal equation

In this section we establish estimates on derivatives of the solution to the eikonal equation for gz . For
simplicity we consider 0 < < 1. Let gz be the mollification of g at spatial scale 272 from Section 2,
and let ¢ be the solution to the eikonal equation

8t(pk(t’x7 77) = _pk(xv ngok(t’xa 7)))’ (pk(o’x9 7}) = (x’ 7])

Then ¢ (t,x,n) = )Y ; n;yi(t, x,n), where y(t,x,n) is as in Theorem 3.3, and the estimates of that
theorem hold with M = 25 Furthermore,

8T]j§0k(t9x’ 77) = yj(t’x1 77)’ axjﬁok(t,xy 7)) =§j(f»x,77)-

These identities follow from the fact that n-dy = & - dx for the homogeneous symplectic transformation
(y,n) = (x,§) at fixed ¢.
We then easily read off the following from Theorem 3.3:

k _
108 i (2, x, )| < Cg 22UBI=2 ), 18] =2, (4-1)

k _
108 9,01 (1, x, )| < Cg 1 22UBI=D) 18] = 2. (4-2)

k _ _
10205 ¢xc (¢, x. )| < Cop 1 22 IFPID 1l g > 2, (4-3)
Additionally,

|axa77§0k(tvx7 7))| E C (4'4)

The following shows that some estimates can be improved for derivatives in 7, which is key to controlling
the evolution operators for small ¢.

Theorem 4.1. Assume that |a| > 2 or |B| = 2. Then when 27k < <1,
; 1.k k(18— _
l(n, 377)] 858%‘(%(&)6, n)| < Ciap (;zzz)lalzz(\ﬂl 2)|77|1 Ial’
and when 0 <t 52"‘,
. k _ _
(0. 09) 02 pc (k. x. )| < Cjq,p 27 BID 1l

Proof. By homogeneity it suffices to consider the case j = 0. If |a| < 1, the estimates forall 0 <t < 1
follow from (4-1)—(4-2). To handle || > 2, we take a parameter £ with 25 <e=<l1. Letg, x(x)=gk(ex),
where g is the localization of g to frequency 25, Similarly, let p, x (x,§) = pi(ex,§). Let ¢ x be the
solution to

01 @e k(1. X, 1) = —pe i (X, Vx@e i (1, X. 7)), @k (0,x,1) = (x,1n).
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Then by homogeneity we have
-1, 1
okt x,n) =epex(e 1,6 X, 7). (4-5)

The metric g, x (x) is a mollification of g(ex) at scale e~1275 < 1. Since g(ex) i 1s Lipschitz with bounded
curvature, uniformly over ¢ € [0, 1], we can apply estimates (4-1)—(4-3) w1th 25 replaced by M = €25,
For 25 <t <1 we take ¢ =1 in (4-5), and apply (4-3) with M =2~ 5 to get

|8ﬂ3a(pk(l‘ x,n)| < Cy ﬂtlal 122(|a|+|ﬂ| 2)|77|1 lee|

For || > 2 this implies the desired estimate.
ForO0<t < 275 we take £ = 275 in (4-5), and apply (4-3) with 25 replaced by 1 to get

k _
1080% 0y (2, x, )| < Cy gt 22P1 |11,

Since ¢t < ¢85 25002 for 4 >27% and |a| > 2, and 125181 < 250B1=2) for 0 <t < 27, this concludes
the theorem for 0 <t < 275, O

As a corollary we obtain the estimates we need for linearizing the phase function, and showing the
symbols are slowly varying, for 7 in an appropriate conical region. Given a unit vector v, and 27k <r<1,
we define the dyadic/conic region

_ _1l__k
Q= {n: 32 <l <3272 -l = fgrm2272 (4-6)
Note that on this region, since =325 <1,
3 _1_k
Inl = (v.n) = glnl. - [Hyonf <7222,
where I1 1 is projection onto the hyperplane perpendicular to v.
Corollary 4.2. The following estimates hold if n € Q,‘; , and 27k <r<1:
(v, 89)7 9508 (@20) (1, % )| = Ca,p 127F 27K (1227510l 25181, @7

(v, )7 9298 (B 0xr) (. x. )| + 275 (1, 8,) 0208 (320 (2. x. )|
< Clap2 ¥ (227 5)l 2511 (4-8)

and

. i, 1 _ _k k
(v, 3y)7 0298 (0 (t. %, 1) — 1 Vyor (1. x,v))| < Cj g p 270 (1227 7)1 23211, (4-9)

For 0 <t <27% these hold for n in the dyadic shell %2"_1 <|n| < %2""'2 if t is replaced by 27K on the
right-hand side.

Proof. We consider the estimate (4-7). Theorem 4.1 gives

i — 1 __k k
[(n. )7 8508 (D701 (1. x. 1) < 0 127F (12273)1 2311,
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After rotation we may assume that v = (1,0, ..., 0). We proceed by induction in j, the case j = 0 being
the same as above. Suppose then that (4-7) holds for j < jo. We expand

o _ ,J0qJ R B/ 2y
(n, 0y} =n°9;) + E : Clo,jia M7 07y, Oy
J+lel<jo
J<Jo
. _1.k . . .
Since 1 < %2k+2 and || <¢7222 on Q] ,, the induction hypothesis yields

Im°033 508 @) (x| < Crap127% (22731 231,

which establishes (4-7) for j = jo, since n; > 25=2 on Q,‘; ;- Similar steps establish (4-8).

The estimate (4-9) follows from (4-7) if || > 2, so it suffices to consider || < 1. The proof for | 8| # 0
will follow from the proof for f = 0 with ¢ replaced by 85 ¢k, s0 we assume B = 0. We then rotate to
assume that v = ey, in which case by homogeneity the estimate becomes

. ki 1 __k
107, 0% (0 (2. x. n1.0") — @k (£. 3,71, 0) = 1 - Ve (£, X. 71, 0))| < Cj0 279 (1227 7).

. . . . . _1 kK
This estimate follows from a Taylor expansion argument together with (4-7), since || <t7222 on Qz' .

For0 <t < 27k the desired estimates follow easily from Theorem 4.1. O

We also record estimates for time derivatives of ¢, which will be used in establishing space-time
energy estimates.

Corollary 4.3. Assume that 27% <t < 1. If || > 1, then
(1,8} 02010k (1, %, )| < Ca(225)/ = |1,
andifm+ |B| > 2,
(1, 0)7 802070 (1,5, M) < C; (4225125 nFH1BI=2) 1l
If 0 <t <27k both of these estimates hold with t replaced by 2~% on the right-hand side.

Proof. By homogeneity we may assume j = 0. The estimates that involve no derivatives in ¢, that is, the
second estimate with 2 = 0, hold by Theorem 4.1. We assume both estimates hold for derivatives up to
order m > 0 in ¢, and prove they hold for derivatives of order m + 1 in . Write d;¢r = pr(x, Vx@r),
and observe that 3,’2 a5 a7 1k can be written as a sum of terms of the form

(0800) pio) (x. V) (081031 07" Ver) -~ (8571057977 V.o,

where Z}”zlo Bi =B, Zﬂl o =a, Z}yzll m; =m.If |B| = m = 0, we must have |o;| > 1 for all j,
and the first estimate of the corollary is a result of the following bounds from (2-7) and Theorem 4.1:

|0 pic) (x. Vi) < Cy [n] =7,
/ 1 Kk o |— .
|a(,7‘/Vx(pk|§Caj (1222)|0‘/| 1|77|1 latj |
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Assume that |8| +m > 1. If | B¢| > 1, then the second estimate of the corollary is a result of the following
bounds from (2-7) and the induction assumption:

|0500 pic) (x. V)| < Cy g, 25 WBol=D 117,
055707 Vx| < Cay gy m, 22041 (1223 g s,
Finally, if |8o| = O then we may assume |B1| + m > 1, and use the bounds
|9} i) (%, Vagp)] < Cy Inl' =7,
081951 07" Vil < Cay g 22 PITFMID (¢225 )l
005 07 Veprl < Coy . m, 22T 223 0 1 O

5. Parametrix for the dyadically localized equation

In this section, we use the eikonal solution ¢ to produce an approximation to the wave group for P with
data at frequency scale 2k In the next section we will use these approximations to produce the exact
evolution group for P by iteration. For k > 2 we define

k+1
Bi=3 ;1 B (D)(p;(x, D) + pj(x, D)*)B; (D).
Pl

Let p(x, n) denote the symbol of Py. Recalling that ,BJ? =Y,

k+1 k+1
Py = Y pi,myim+ Y qi(x.nBi(m), (5-1)
j=k—1 j=k—1

where ¢g; € S? 1 » uniformly over j. For || € [%2k, %2""‘1] we define
2

b (t,x,n) = e—ifpk(t,x,n)(at _{_iﬁk)ei(pk(t,x,n)’

where ﬁk acts on x.
We then define Wy (¢) for k > 2 by

Wi (1) ) (x) = f o Exn g () £ () . (5-2)

(2n)4

It follows that (3; + i Py )Wy (¢) = By (t), where

(Be(0) f)(x) = ﬁ / O b (¢ g (n) £ () din. (5-3)

Theorem 5.1. For |t| < 1 the symbol by (t, x, n) satisfies

1o-kylal p5(B1+m) &
J g gBgm , (12272)%12> Ll =27,
0. 99 0y 950" Dic (£ x. ] = Crar Bm §z—k|a| 25Bl+m) 1| <27k
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Proof. The symbol by (¢, x, n) is given by the oscillatory integral
i
(2m)"

;i (1. x.1) + / e IOy MO X by (x,¢) dy di. (5-4)

where recall that we assume || € [32%, 22K 1], We write

ekt y.m) —ert.x,n) = —x)-V(t,x,y —x,1),

where

1
Vit xoh) = [ (Vapx +shon ds
0
Then
V([’X’O’ 77) = Vx(pk(t’x’ 77)? 8hj Vj(t’x?o? 77) = %8Xiaxj‘¢k(tvx’ 7’])

We note |V (¢, x,h,n)—n| < %|77| by (3-1), and for || + |B| +m + |y| = 1 Corollary 4.3 yields
kK _ _
02089 0YV (2, x, ho )| < Copm 22 (IFIBIHMHYIZD) | 1=l (5-5)

We make the change of variables y — y + h, followed by { — V (¢, x, h, n) + £, to write the integral term
in (5-4) as

/e—ﬂh@pk(x, V(t,x, h,n) +0) dhdc. (5-6)

We then decompose (5-6) using a smooth cutoff y, supported in || < 2, with y(¢) = 1 for |{| < 1.
Specifically, we write

1= x4 (1— x () + (1 — x4 + x(x@7*F4¢).
Since py € Sll’%, the estimates (5-5) imply that if || € [%2", %Zk"'l],

c 2k(=lal=16D o5 (al+IBl+m+yI=1)  |o| 4|8 +m+|y| > 1, 5-7)
- - -
=La,B,m,yb {2k(1—|0|), le| + B8] +m+|y| =0.

Consider first the term r (¢, x, ), defined by
[ 1 e Vb + 0 2@ (1 = (k) dhag
= / e POAY (Bre e, V(e x. hm) +0) x@75F40) x (1= x(h) || 7N dh d.

The estimates (5-7) show that the integrand is bounded by 25(0=2N)|;|=2N and it is supported where
|£] < 2%=3 and || > 1. Similar estimates on its derivatives in (x, 1) yield that, for all N,

1020807 r (1. x. )| < Cnapm 27N, nl e [22F, 42K+1]. (5-8)
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Next consider the term (¢, x, 17), defined by the integral
/ e ) pr(x V(e x ho) + 01— @75 T40)) dh dE
= [ e IO A — A AN (Pr(x. Vit x. hon) + O (1 = x@Q7FH40) |72V (1 + |1[*) ™" dh d.

The estimates (5-7) show that the integrand is bounded by a constant times 2% (N+3) €172V (1 + |h2]) ™,
and it is supported where |¢| > 2541t follows that r,(z, x, ) also satisfies the estimates (5-8).
Thus, up to rapidly decreasing terms, the symbol by (¢, x, 1) is equal to

[ T e Ve 0 2@ gy dh s,

10 g (2, x. 1) + on )d

We take a Taylor expansion in ¢ of p about { = 0 to write the integral as

3 / 8 DY (@Y i) (e V(e x ko) g () x@TF ) dh d g+ r(r.x. ),
|y|<2N

where r(t, x, 1) is given by

/ (1= [ 10 DY (@ e, Vit x o) + 500 200) x4 40) dhd ds.
ly|=2N
The estimates (5-7) show that |3§8‘,’;r(t,x,n)| < Cnoap Zk(d"‘l_%l“""%'ﬂ'_]v), provided that |n| €
30k 4nk+1
(32552771,
To handle the terms with |y| < 2N, let ¢ (k) = 2744 7(2~*h), which has integral (277)" and vanishing
moments of all nonzero order, and write the y term in the sum as

/ e DY (@Y pr) (x, Ve, x, h,m) x(h)) 2" ¢ (2% h) dh d¢.

We Taylor expand py (x, V(¢, x, h,n))x(h) to order N about & = 0. The N-th order remainder term will
lead to a term bounded by 2k(1=31yI=-N ), with similar estimates on derivatives in (x, 7). All terms with h?
with 8 # 0 integrate to 0 by the moment condition. Therefore, since ;¢ (¢, x, n) = — pr (x, Vx@r (¢, X, 1)),
we can write by (¢, x, n) as r(¢, x, n) plus

1 -
i(—pk(x,vx<pk(r,x,n))+ ) —,D,Z(agpkxx,V(z,x,h,n))\hzo). (5:9)
lyl<2N ©°

If |n] € [22%, 22K%1] then (Y—1 + ¥k + ¥i+1) (Vi (. X, 7)) = 1, s0 by (5-1) the y = 0 term combines
with —py (¢, x, Vi (2, x, n)) to give

k+1
> (k= p) X Vet x. ) ¥ (Vagre (1. X, 7))
J=k-1 k+1

+ > 4G Vagr(txn) B (Vagie(t.x.m). (510
j=k—1
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We will estimate this term similarly to the term |y| = 1, using the following estimate, which is a
consequence of (2-5):

19802 (pr — p)(x, §)| < Cop 2K GIAI=D) 1 lel, (5-11)

The same estimates hold for the term g; (x,§) € S 0 1 when |£| ~ 2K
We now examine the terms in the sum when |y| 2 1. Observe that

MV (t.x.hm)|,_y = OVe(t.x. 7).

1
1+ 16|
The y term in (5-9) is then a finite linear combination of terms of the form

@7 P, Vagre(t, x, M) OF Vagie (@, x, 1) -+ (0F Ve (¢, x, 1)),

where 6y +---4+6; =y,each 6; #0,and [ = |o| > 1.
By Corollary 4.3, when 6; # 0, |n] € [32, 42k+1] and 27 <1 <1,

; , k(10; 1__k k
(7. 9p)” 32}!353?1(3% Veor (6, x, M) < Cjapm 6 25016;1+1) (122 z)locl 22 (Bl+m)

A recursion argument and (2-7) then show that, for 27k <<,

[(n, 3y)7 030207 (0L pi) (x, Vaepr) 0% Vagppe -+ 0% Vegpp )|

< Ciapmyo 25C=lvl=lo (4395l o 5(B1+m).

The expression for by (¢, x, n) involves an asymptotic sum over |y| > 1, where also |o| > 1 in all terms, and
the sum thus satisfies the statement of the theorem in the case 2% <t < 1. The estimate for 0 <t < 2~k
follows similarly.

It remains to consider the term (5-10). Using (5-11) and a similar recursion argument, we obtain for
the case 2% <t <l,

k+1

‘(77, 3n)/8?7{35 a;n( Z (pk - Pi)(x, Vx(pk([’ X, n))wl (Vx(pk(l, X ;7)))‘
i=k—1 |
< Ciapm (327 5)ll 5 UBIEm)
and the proof for 0 < ¢ < 27% is similar. i

Repeating the proof of Corollary 4.2, we obtain the following.
Corollary 5.2. The following estimates hold for n € Ql‘; ;.
(v, 8y 020207 bi (1 3, | = Crapm 270 (13275l 25 (BT,

For0 <t <27% these hold for n in the dyadic shell %2"_1 <|nl < %2""'2 if t is replaced by 27 on the
right-hand side.
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6. Energy flow estimates

In this section we construct the exact wave group exp(—i¢P) via a convergent iteration based on the
approximate wave group o
W(t) =Y Wi@) + ¥o(D) + Y1(D). (6-1)
k=2
Recall from (5-2)~(5-3) that (3; + i Px) Wy (¢) = B (¢) is of order 0. To show that (3; + iP)W(¢) is of
order 0 we will show that, for |¢| < 1, Wy (¢) f remains localized in frequency to an appropriate dyadic
shell at scale 2%, modulo smoothing errors. This will yield

o0
0 +iPYW() =Y Be(1) + R(),
k=2
with R(¢) a smoothing error. Denoting the right-hand side by B(¢), since W(0) = I the wave group can be
obtained by convergent iteration of W(¢) and B(t), using Sobolev mapping bounds for both. Dispersive
estimates will then depend on showing that composite terms

W(t —s1)B(s1—52) - B(Sp—1 —Sn)B(sp), t>s51>:->5,>0,

have similar microlocal mapping properties to W(¢) and B(¢). For a fixed n we could show that this
term has an oscillatory integral representation similar to that for B(t), but at frequency scale 2K we will
need to consider n up to n ~ 259 for some o > 0. To prove preservation of dyadic localization of the
energy we then need to microlocalize the energy mapping of each term By (s) to within 2k(1=0) of the
Hamiltonian flow. For convenience we fix 0 = %, though any o € (O, %) would work. We then consider
frequency cutoffs with symbols a(n) € S9, that is,

4

_3 _
0%a(n)| < Ca 273191 supp(a) € {51 22571 < |y < 32K 42, (6-2)

Given any compact set K C {n: Z2K=1 < || < 82k+2} and § > 0, there exists a cutoff a satisfying
(6-2) such that supp(a) is contained in the §2°% neighborhood of K and @ = 1 on the %82% neighborhood
of K, and such that the constants C,, depend on § but are independent of K. Such an a(7) can be obtained,
for example, by convolving the support function of the %82% neighborhood of K with an approximation
to the identity supported in the %8 ball.

Lemma 6.1. Suppose that ay and a, are cutoffs satisfying (6-2), and let K be the projection onto 1 of
the image of R4 x supp(a1) under the Hamiltonian flow of py at time t. Assume that ay = 1 on the
§2% neighborhood of K. Then for all N,

(1 —a2(D) By ()ar (D) f g < Cy 27N || fll -

where the constant Cy depends only on N, the constants Cy in (6-2), and 5. The same holds with By (t)
replaced by Wy ().

Proof. We prove this using a modification of the Cérdoba—Fefferman wave packet transform [1978]. We
use the particular transform from [Smith 1998], which is based on a Schwartz function with Fourier
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transform of compact support, instead of a Gaussian. Fix g a radial, real Schwartz function with
d N
llgllz2 = (27)2 and supp(g) C {|§| < %} and set

grs(z) =24 67X 025 (2 — ).
For f € L%(R?) define
T8 = [ 1) 2o dz

Then T}, is an isometry, with adjoint given by
(1)) = [ PO greldnd
Since || ~ 2% on the support of a1 (1), it suffices to show that for all N,
1T (DYN (1 —a2(D)) Be(1)ar (D)T F 2 goay < O 272N || F | 2 goa)

The operator on the left is given by the following integral kernel:

Ki(t.x", £ x,8) = /Rd (B (1) a1(D) gx,¢)(2) (D)N (1 —a2(D))g ¢(2) dz.

Let (x¢, &) = x:(x,§), with y; the Hamiltonian flow for pg. A simple integration by parts argument,
using Lemma 6.2 below, shows that for all N,

|Ke(t. X &, )| < Cn2FN (1425 |x — x; | + 272 |&/ — &) 8N 241 63)
<Cp27*N 1 +2%|x’ — X7+ 2‘§|§’ —£,)"24,

where in deducing the second bound we used that the integrand vanishes unless | —&;| > § 2% 25,
The desired L? bound then follows by the Schur test, using the fact that (x, §) — (x;, &) is a volume-
preserving diffeomorphism, which is homogeneous in £ and bilipschitz on the cotangent bundle (uniformly
over k). O

Lemma 6.2. Let fy ¢(y) = Z%ei(g’y_ﬂf@%(y —Xx)). Assume that f is a Schwartz function and
§] € 2471, 2542, and let (x;. &) = x¢(x. ). Then

(Bk (1) fr)(z) =24 /027201, 25 (2 — x)),
where forall N, j, v,
18/3%h(t,2)] < Cny 257 (1 412D 7Y,
For each N, j,y, the constant Cy_; , is bounded by a Schwartz seminorm of f, but is uniform over k, x, §.

Proof. Up to a factor of (27)4, the function h(z, z) is given by the integral

f e U by (1 x, +27 22,8 +25 ) Yy (6 +25 ) f () d.

where
[6)) k k k P
(t.z,m) =@r(t, xy +2722,54+22n) —(x,§ +22n) — (.27 22).
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Since ¢y, is the homogeneous generating function for y;, this equals

_k K K _k
Ot xe +2722,854+220) — e (t, X1, ) =220 (Vy@i) (1, %1, 8) =272 2 - (Vi) (1. X1, §).

By Corollary 3.2, Theorem 4.1, Corollary 4.3, and (4-4), the following estimates hold on the support of
the integrand:

. P
0702930z, )| < Cap ;227 if el + 18] = 2.
As @ vanishes to second order at z = n = 0, on the region of integration we have
. K ;
187 @(z. )| = C; 227 (1 + |z| + 0>,
. K ;
107 V2 ®(z. )| = C; 227 (1 + |z] + []).

By Theorem 3.3 we have |V,V,®(z,n) —1| < ¢4, and since |V%d>(y, n)| < C, we deduce that |z| <
C(IVy®@(z,n)| + [nl) and thus
1 o In|?
L+ Va2~ L+ ]z

By Corollary 3.2, Theorem 5.1, and (6-2), since |§ + 25 1| ~ 2% we have
k k k ~ k
1008 0% (bie(t.x +27 22,6 +27n) Y6 +27n) F ()] < Cwap, 227 (L4 DY

Integrating by parts with respect to the vector field
_1=iVyd(z,n)-Vy
1V )2

then leads to the bounds on 8{ 02 h in the statement. O

The same argument also shows that the kernel of Ty By (t)T];k satisfies (6-3) with N = 0, and in
particular By (¢) is bounded on L2(R?), uniformly over k and |¢| < 1. By applying Lemma 6.1 with
a1(n) = 1 on the support of By (1), and a2 () supported in the annulus |n| € 25—, 2K+2], we then obtain
the following by an orthogonality argument.

Lemma 6.3. For all s € R we have HZI(?;Z Br(t)f HHS < Cs|| f s, uniformly over |t| < 1.
We can now show that W(¢) defined above is an approximate evolution operator for P.
Lemma 6.4. Let W(t) be defined by (6-1). Then
o0
@ +iPYW(t) = Y Be(1) + R(),
k=2
where R(t) is an integral kernel operator with kernel K satisfying
0908 K(t,x, ¥)| < Civap (1+ [x =y )7,

In particular, |R(t) f ||y~ < Cn ||.f||g—n~ for all N, uniformly over |t| < 1.
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Proof. We take a () supported in {$2% < |5 < 2251} and equal to 1 where {22F < || < 82k+1}
satisfying (6-2) with constants Cy independent of k. For ¢; small enough, the condition of Lemma 6.1
with a1 = ¥ and ap = ay is satisfied for all ¢ with |¢| < 1. We need show that the operator

Y (P = PWi(t) = Y (P — P)(1 —ap (D) Wi (1)

k=2 k=2
satisfies the conditions for R(¢), since P o (Yo(D) 4+ 1 (D)) does. It suffices to show we can write
(P = Pi)Wi(1) = Op(Ri) o Y (D).
with Ry (¢, x, y) an integral kernel satisfying, for all N,
19595 Re(t.x. 7)| < Cap 27N (14 e =y~

Observe that Ry = T;* Op(Ky) Ty, where Ky satisfies (6-3), and vanishes unless |£| € [%2", 30k+1]
and |§'| ¢ [22%, 82K*1]. For ¢, small this implies |¢;] € [22%, £25+1]; hence €' —&| > 2k=4_ Since
|x —x¢| <2 for [t] <1, we have for all N

|Kie(t, 3 85, 6)| < Oy 2 N (142751 7N (1 4 =27,
The operator Ty, is given by a kernel satisfying for all N

la]
102 Tr (x, &5 )| < Cva2X 5 +9 (1 425 [x — y )N,

Since the volume of integration in £ is less than Cz 259, the estimate for Ry (¢, x, y) follows by composi-

tion. O

We now write

/ Ric(t.x.y) (W (D) ) () dy = / SR (1 e ) () £ (n) d,

(2m)"
with

I’k(l‘,x, 7]) = e—iwk(t,x,n) / Rk(t,x, y) e—i(y,r]) dy

Then for all N

1080% k(. x. )] < Cop 2 *N, 2K < |y <2FH2,

’

and we can incorporate 7y, into by, and hence Ry (¢) into By (¢). Thus we can write

0 +iP)W(t) =" Be(t)+ P o (Yo(D) + (D)) = B(0).
k=2

We now can generate the exact wave group E(t) for d; + i P by iteration,

E@t) = W(z)—[ot W(t —s)B(s) ds+/0t/0s Wt —s)B(s—r)B(r)drds—---.
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To write the iteration more concisely, let A™ C [Riﬁ“ be the m-simplex, consisting of ¥ = (r1, ..., m+1)
with r; > 0 for all j, and with r{ +---+rp41 = 1. Let dr be the measure on A™ induced by projection
onto (r1,...,7m). Then
o0
EO =Y 0" [ Wtrmin) B B dr. (6-4)
m=0

If Cy is an upper bound for the H*(R?) operator norm of both W(z) and B(t) for all |¢| < 1, then the
m-th term has H*(R?) operator norm at most C m+1pm /im0, and the following theorem holds.

Theorem 6.5. The expansion (6-4) converges uniformly over |t| < 1, in the operator norm topology on
H*(R?) for all s € R. The limit E(t) is a one-parameter group of L®-unitary operators, and for f € H¥,
F e LY([~1,1], H®), the solution to (3; +iP)u = F,u(0,-) = f is given by

t

u(t,-) :E(t)f+/0 E({—s)F(s,-)ds.

Our next two results show that if we localize E(¢) on the right to frequency scale 2k, then modulo a
smoothing operator error one can localize each of the terms W(tr;) and B(¢r;) in (6-4) to frequencies of
scale 2K, We use the notation Y = Vx_1 + Vi + Yk 1. and define

Wi (t) = Yi(D)Wi—1 + Wi + Wi 11)(0),

- - (6-5)
By (1) = Yk (D)(Bik—1 + B + Br11)(1).

Lemma 6.6. If m + 1 < 2§, then for all N > 0 the operator

Ricp (t) = W(trm41)B(trm) -+ B(tr) Y (D) — Wic(t rms1) B (trm) -+ B (tr1) ¥ (D)

satisfies the following, with constant C independent of m, t, k, and r:

IRk ) f lzrn < C 27N | fllgg—n .

Proof. Fix t and r, and without loss of generality assume ¢ > 0. We introduce a family of intermediate
cutoffs ¥ ; (D) for 1 < j <m, which depend on ¢r. Define points % < p]’._1 <pj< p} < % as follows.
Take ¢ and ¢ such that py = €0 = %, and e€0t2¢1 = %. For j > 0 we set

L 1y,—k
I eC()+C1(r]+"'+rj)t+6‘1(]+§)2 4

_k
co+c1(r1+~--+rj)t+c1j2 4 P
’ J

pj=e

Thus v, is supported where || € [p612k, p02k+1], and &k(’)) =lontheset{n:|n|e [P;,,_IZk, P;/nzkﬂ]}-
Also,
, ) 1 _k ) ’ . 1 -k
Pj—pilz 31274, |pj+1—=pjl Zcirjrit + 561274,

Let ¥ 0 = V. By the comments following (6-2) we can construct functions Y ; (§) for j > 1 that
satisfy (6-2), with constants C, that depend only on the dimension d, such that

-1 .
supp(¥e,;) C {n: Inl € [pj~ 2%, pj2k+1}. j>o0,
Y, (=1 if [yl e[p; 12k pi2FtY. =1
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Letc), = supx’§(|§|_1 |Vx pi (x,6)]) < ¢gq. Then for solutions to the Hamiltonian flow,

exp(—cy tr;) [E(s)| < [E(s +1r))]| <expley tr)) |§(5)].
Then if Cii < ¢1, the condition of Lemma 6.1 with § = %cl is satisfied for ap = ¥ ; and ay = Y ;1.
Thus Lemma 6.1 yields, for j > 1,
11 —yx (D) B(trj) Vi j—1 (D) as—>ps < Con 27N forall s, N.

Since B(t)Y,; (D) = By (£)Vk,; (D), and the number of terms is at most m < 25, we can apply this
repeatedly to write
W(trm+1)B(trm) -~ B(tri)yg(D)

= Wi (trm+1)Vk,m(D)Bi (trm) -+ Vi 1 (D) B (tr1) Y (D) + Ry (2),

where || Ry , () |as>ms < Cs,N 27Nk for all s, N. We then prove Lemma 6.6 by observing that the
same steps let us write

Wi (t 'm+1) Vi (D) B (tm) -+ Yrie 1 (D) By (t71) Y (D)
= Wi (tTm+1) B (trm) -+ Bi(tr1) Y (D) + Ry, (1)

for a similar Ry ,(¢). Since Ry ,(t) is localized on the right at frequency 2k it follows that

I Rir O~y <Cn 2~kN

for all N. O

Corollary 6.7. One can write

00 2k/4

EO =Y Y 0" [ W) Belarn) -+ Betr (D) dr + R,

k=0m=0
where for all N we have |R(t) f|g~n < Cn || f |-~ , uniformly over |t| < 1.

Proof. Consider
o0
S O [ W) B By (D) dr.
m=2k/4 A
For || <1 and all N, the HY — H™ operator norm of this sum is bounded by the sum
Yot /mi<cy2NY
m>2k/4

It is localized on the right at frequency 2k and thus maps H™N — HY with norm < Cy27*N. O

The arguments leading to Lemma 6.6 apply equally well to conic localization. We take a finite partition
of unity on R\ {0},

1= Z aw(D), supp(ae(n)) C {773 ‘a)—% < 3_12}

wEE
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Let dy(n) be a smooth, homogeneous cutoff such that

1

- . ~ n
ap(n) =1 if jo—— =51 Supp(aw)c{n:'a)——

We define an angularly localized version of Wi, recalling (6-5),

WE(t) = dw(D)Wi(t)dw (D),

~ - (6-6)
BR (1) = Go(D)Bi(1)aw(D).

Then,

RY (1) = W(trmy1)B(trm) - B(tr1)aw(D) Yk (D)
— W& trma) B (1) -+ B (tr1)au (D) (D) (67)
satisfies the conclusion of Lemma 6.6, and consequently, with R(¢) as in Corollary 6.7,
o
E@)=>_ Y Ep®n+Rq).
k=0weE
where we define

ok /4
Eg@my =) (=" /A W rmy) B (trm) -+ BY (tr1)aw(D) Y (D). (6-8)
m=0

Lemma 6.8. Let fy ¢(y) = 2 ei(g’y_x)f(Z%(y —Xx)). Assume that f is a Schwartz function, and let
(x¢,&1) = x¢(x,&). Then one can write

(L (1) fep)(2) = 24 /0200 (e 25 (2 = x,)) = h(t. ), -
where for all N,
10/3%h(t,2)] = Cny 257 (1 412D 7Y,
For each N, j,y, the constant Cy,;,,, is bounded by a Schwartz seminorm of f, but is uniform over k, x, £.

Proof. Let K(s, y, n; x, §) denote the integral kernel of Ty, §]‘é’ (s)T,’. Following the proof of (6-3) we can
bound, with Cp uniform over k and s,

k _k _
|K(s,y,m: X, )| < Cn(14+22 |y —x5| +272 =&V,

Furthermore, this kernel vanishes unless 272 < ||, || < 2K*3. By the bilipschitz property of the
Hamiltonian flow, for such 7, § we have

|ys — xs| + 27K [ng — & < Aly — x|+ 27K Ay —&|. (6-9)
For N > 2d + 1, we then bound the kernel of

Te BE (tr1) BL (tr2) T = (Te BE (tr1) T (T BR (t72) TY)
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by C 1%, multiplied by the quantity

/(1 +25 1y =z |+ 27 = e DV (U425 |2 = x| 4 2720 — i, )TV dz d
< AN +251y =Xy 1| + 272 I = 1y 4 D7

Similarly, for r € A™ the operator T} Wk“’ (t rm+1)§;;) (trm)--- §]‘é’ (tr1)T;' has kernel bounded by

Cn(ANCH)™(1 425y = x/| + 272 =&)Y,
and summing over m gives the following bounds for the kernel of T} E b )T},

Ry, 1%, )| < Oy e NN (1425 |y —x |+ 27— &)V,

Let F' = Ty ( fx,¢). Then

[F(EB)| < Cy(1+25[% —x| + 272 —£) 7.
Then (E]‘c" (?) fx,£)(2) is equal to

2 / ROty n:%.8) F(2,8) ! 15 ) (25 (z — y)) dx dE dy dy.

The change of variables
_k k
om) = (e +272y.6 +22),

- k k —
(X.6) = (x+272x.6§+228)
h —_ ke i2=k/2(g, 7Y Fw —£ 5
shows that h(¢,z) =27 4 e EHER(T) fx,£)(xe +2722) is equal to
=0 _k k _k _ k- _k _ ko
Kot xe +272y, 6 +22mx+272x,§+228) F(x +272x, £ +22§)
ok _ -
x e 712 2 &N I M2=Y) o2 _ vy d X dE dy d.
By the bilipschitz property (6-9) of y; we have
_ = k _k _k _ _k k k2
Iyl +Inl < Alx|+ Al§[+22[(x; +272y) = (x +272X) [+ 27 2|6 +220) — (§ + 22864
and conclude that
~w _k k _k _ k - —N = s\N
|Kp(toxe +272y. 6 +22mx+272%, 54228 < Cy (L + [y + [n) 7 (L + X[+ [ED.
Together with the bound
[F(x+275%, 6 +255)| < Cw (1 + %] + E) 2,
this leads to the following estimates on 9% h(t, z), which is the case j = 0:
|07h(1,2)| < Cny (141277, (6-10)

The constant Cy,, is seen to be bounded by a Schwartz seminorm of £, but uniform over k, x, §.
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To handle time derivatives we proceed by induction, and assume the estimates on 8’,; 0% h(t, z) hold for
0<i <j,andall y. We write

t
E2() foe = W) fus + /0 Wt —$)EL(s) fug ds,

where on the right the term E]?’ (), defined in (6-8), has upper summation limit reduced by 1. This does
not affect the validity of (6-10), since the proof of (6-10) is done separately for each value of m. By
Lemma 6.2 the first term satisfies the conditions of the statement, since the proof of that lemma works
equally well for By (¢) replaced by Wk"’ (t). The desired estimates on A are then a consequence of the
following, for the given value of j and all y:

0z =&)Y 0 +ipe(xe, E))/ ! [0 t Wt =) EP (s) fr g ds
< Cn 412 025D (1 4252 = x, )N, (6-11)
This is seen by noting that
e @, i pr (e E0) (60T R 23 (2 — )
= @eh) (1,25 (2 — x0)) — (i Ve pr(xr, E0) - (2 = X0k +23 (Ve pi) (e 1) - Vo) (1,23 (2 — xp).

The latter terms are controlled by the spatial derivative bounds on 4, and their time derivatives are
controlled by the bounds

. k : . K ;
100 (Vi i) (X, E0)| < Ci 26727 190(Ve pro) (xe, 80| < € 227,
which follow by Corollary 3.2 and (2-7).
To establish (6-11) we expand

. t ~ ~
@ +ipr (e, £)) ! /0 W —5)EL(5) freg ds

J
= @ +iprCee, 0 7@ +ipk Krtrs Er)) W () ER (1) frelr=0

i=0 t
4 /O @0 + ik (s E0)T T (1 — ) B2 (5) g ds.

The latter term on the right is handled by Lemma 6.2, since we have already shown that EI‘: (8) fx e =
f(s,+)x, . Where f(s,-) is a bounded family of Schwartz functions. The first term on the right expands
into a sum of terms

[07 3y + ik (Xe4rs Er4r) WE ()] rmo@r + ipre (e, ) T EL (1) free- (6-12)

We can write [07 (0, + i px (X7, Er47)) Wk‘"(r)]r:o as a sum of terms

@7 prcCee, 60)) -+ O pr (e, EN@r + i pr (Ker, &) W ()]0,
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where ny +---+n, +m+1=n+i,and each n; > 1. By Lemma 6.2 and the induction assumption we
can write

[Br + i p (o Er0r) WE ()] rm0(0r +ipi (e 0 " EL (1) frop = 250H77D f(1), e

for a bounded family of Schwartz functions f(¢,-). The estimates

1977 pr(xe E)| < Cu, 250540y = 1,

then show that the term in (6-12) is of the form 257 f(t.)x, g forabounded family of Schwartz functions
f(¢,-), which implies (6-11). O

We use this to establish sideways energy estimates for £(z), which state that if the initial data f is
microlocalized to frequencies within a small angle of the codirection e, then the L2 norm of the restriction
of E(t) f to space-time hyperplanes perpendicular to @ is dominated by the L2 norm of f. By rotation
and translation invariance it suffices to consider w = e; and the plane x; = 0.

Theorem 6.9. Suppose ¢ € Ccoo((—%, %)) Then

Hd)(t)(ael(D)lﬁk(D)E(l)f)}xFOHLi,Lg =Clfle2

for a constant C that is independent of k.

Proof. By Lemma 6.6 and the comments following Corollary 6.7, it suffices to show that

[eOE! O], ollz2,22 = CIS ez

For £ € R? with |Z (£, e1)| < % and |s| < 2, the null bicharacteristic curve y(s) € (R¥*t1)* of T + pr(y. 1)
that passes over (x, £) at time s = 0 satisfies % <|yi)|= %. Consequently, if |x1| < % and |[£(&,e1)| < %
there is a unique value s = s(x, &) in {s : |s| < 2} such that y(s(x,§)) € {y; = 0}. We parametrize
the cotangent bundle of y; = 0 by (¢, y’,7,7’), and let Tlg be the wave packet transform acting on
this plane. Observe that the integral kernel I?,i‘ ¢, y,t,n:x,§) of T,? (¢ (Z)Evz1 (1)T) vanishes unless
£ en)] < L.

We show that if |x;| < 3 then

KN,y oonix §)]
k _k —N
< Cn (1+22](0, ") = M yy(s(r. )| +272 (2. 0) = Moy (s(x. £))]) . (6-13)
The Schur test, and the fact that (x, &) — y(s(x, S))} olsa blhpschltz symplectic map, shows L2

boundedness of T0 qﬁ(t)Ee1 T 1|x1|<
To prove (6- 13) we use Lemma 6.8 to express K Y,y 1,0 x,€) as

3. We con51der the case |x1| > 3 3 afterwards.

2kzd/ ¢! (&> (0,27 =xs) =it (s=0)=i{n"2" ="} (. 25((0, z") —xy)) g(Z% (s—t,2—y"))dsdz'.
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Since y is null, we have I1;y(s) = —p(xs, &) = — (&, 05x5). We then note that
0y +i(n — E;))ei(Es,(O,Z’)—xs)—it(s—t)—i(n’,Z’—y’)
=0
= (8 + (T + pr(xs. £)) =i (s, (0.2) = xg) ! e (02N TRITIROOTH I,
Applying each of 2_%82/, 2_§85, or (d5&s, (0, z') — x;) to the amplitude term A(---)g(---) preserves its

form. An integration by parts argument, together with Schwartz bounds on % and g, then shows that the
integral is dominated in absolute value by

kd k k k k k —

Cn 22/(1+2‘2|n’—5§|+2‘2|r+pk(xs, EN 25 |s—1|+22 |2/ —y/| +25|(0,2)) —x,|) N dsdz’.

(6-14)

Note that |(x5)1] > 2|5 —s(x,£)| as |9s(xs)1| > 2. Since 27%&;, 27 pr (x5, £)., and x; are all uniformly

Lipschitz in s, the integral is in turn bounded by

Chiani125 /(1 LS5t 222 — /)2 ds dZ

_k k —N

x (14272 |(x ) = ey (s(x. ) +27 (1, ) = Ty (s(x. €))7

which yields the estimate (6-13) for |x1| < %
If |x1| > 2, |¢t] <1, we have |(x;)1] > %|x1| > %|t|. By a proof similar to above, (6-14) then leads to
the following bounds:
~ k k k k —
Ky rn i O) 1 sl SO (14272 [t pre(x. §)| +272 0 =8| +22 x| +22 |y =) N
Here we use, for example, that
X1l + 1y =X T < 1G] + [y = X1 < 1Gen)s| + 1y —xg] + s — ]

by the above. The Schur test, and the fact that (x, &1, §') — (x, pr(x, &), &) is a diffeomorphism on
|Z(&, e1)| < 3. proves L? boundedness of the operator T ¢ (1) E;' (1) T} L 22 O
We now turn to the proof of (2-14) for the operator E(¢), that is,

KDY E@) fllLaLr o, 11xrey = C LS IL2(wa)-

t
H(D>_s/(; E(@t—s)F(s,-)ds EC”(D)I_SF”

LY L% ([0,1]xR4)

LY L7 ([0,1]xR4)
for s, q, g, r, 7 satisfying the conditions of Theorem 1.1. A consequence of Corollary 6.7 is that

4o (D)Yr(D)E(t) = aw(D)Yi (D) E(t)ay, (D) (D) + aw(D) Yk (D)R().

with R(#) a smoothing operator, and a,,(7)y;.(n) a S ?,0 cutoff to a §2% neighborhood of the support of
aq (M) (n). Since g, r >2>g’, 7, it suffices by Littlewood-Paley theory to prove that, for a constant C
independent of k,

law(DYWE(DYE®) £ 2 11, o,11xmey < C 251/ 2y
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and that

< C2K||F|
L?LQ([O,l]de)

“ /0 40(D) Vi (D)E(t — )Ly (DY (D) F(s.) ds

LY LY ([0,1]xR4)"

Since E(t)E*(s) = E(t —s), we can apply [Keel and Tao 1998, Theorem 1.2] with a scaling of (¢, x)
by 2k to conclude that these are implied by the estimate

laly (DY} (D)E(t —$)aly (D) (D) f | ooy < C 24 (1 +2K|t —s))™ T | £l 11 ey

By Corollary 6.7 and the comments following it, this estimate in turn is implied by proving the same
estimate with E (¢ — s) replaced by EI‘C" (t —s). Letting IZ,‘(" (¢, x, y) be the integral kernel of E,‘c" (1), we
need to show that

K2t x,y)| < C X+ 2Ky~ F", | <1.

We in fact prove a stronger estimate, which captures the decay of the fundamental solution away from
the light cone. We will show in Section 7 that, for all N, with S;(y) the geodesic sphere of radius |¢|
centered at y, and dist(x, S;(y)) the geodesic distance in gz of x to the set S;(y),

1RO (t.x. )] < Cy 259 (1 + 2K)¢)) T (1 + 2¥|dist(x. S: ()Y, (6-15)

which will imply (2-14) by the above.
By similar steps and duality, estimate (2-15) reduces to proving that, for g; and s4 as in Theorem 1.2,

and ¢ € C°((~3. 3))-

272

'¢><z) / B2t —5)p(s)F(s.-) ds

<C2%sa||F| o .
L2 Ly L3

It suffices to prove this for w = e1. We deduce from (6-15) that
R, 9)] < Oy 26 (142 v — y) ™5 (14 281 —dist(x, ) ) ™7,

which uses that dist(x, S;(y)) > |t — dist(x, y)| and dist(x, y) & |x — y|. As a consequence, letting
x = (x1,x’), we have

H¢(r> / Rt —s.x1.x' y1.y)$ () F (s 1. ) ds dy’

LYL?

— _d=1
= 2D+ 2K e =y DT IFCLyn )l L2

On the other hand, writing E(t —s) = E(t)E(s)*, Theorem 6.9 and the comments surrounding (6-7)
show that

¢(t)/ I?,i‘(t—S»XLX’,yl,y’)¢(S)F(s,y1,y’)dsdy’H o SCIFG )2, 2
L

x/Ll
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Interpolation then yields

H¢(r> / RE'(t —s5.x1.% 1, Y)p(5) F 5. y1.y') ds dy’

ad 12
L9 L2

-1+
< C2%5d|xy —yi|” T@a 9 | F(-, 1,0 ay 5

y/ s

and an application of the Hardy—Littlewood inequality yields the desired bound.

7. Wave packets and dispersive estimates

This section is devoted to the proof of (6-15) for |¢| < 1. Without loss of generality we assume 0 <¢ < 1
throughout to simplify notation.

To motivate the proof we recall Fefferman’s analysis [1973] of exp(—i|D]), the wave group for the
Euclidean laplacian at # = 1. Consider

Ki(x) = 2m)" [ =il g () dy.

Following [Fefferman 1973], we have the decomposition (1) = »_, ¥/ (n), where ¥} equals
Y multiplied by a homogeneous cutoff to a conic neighborhood of angle 272 about the direction
v € S~1 and v varies over a discrete set of directions separated by distance 2™ 5. The function (4
behaves like a scaled cutoff to a rectangle of dimension 2k % (22 )d 1in that

— le|
(0, 3" 9% YL ()] < Con @2 K" H5),
with constants independent of k. The angular width is selected since one can write
My = e gl (o).

where a; satisfies the same derivative estimates as ;. Then we have the decomposition

Ke(x) =Y f(x—v). where f(n)=ay(n).

The function f;”(x—v) is concentrated in a rectangle centered at v, of dimension 27k along the v-direction
and 272 in perpendicular directions. By the spacing of the indices v these rectangles are essentially
disjoint, and simple geometry shows that, for all N,

|K(0)] < Cy 228G (14 2K |[x| — 1)),

If 2% <t < 1, the above argument can be scaled by ¢ to decompose the kernel of exp(—iz|D |) This
gives a t-dependent splitting ¥ = >, wk ;» Where now wk ; 18 localized to a cone of angle ¢ —30- ’5’
and the fk ,(x —v) are concentrated in a rectangle of dimensions 2™ kand 2275 , centered at rv. These
rectangles are again mutually disjoint, leading to bounds

1K (1, %) < Cy 25C59) (5 (1 2K || = 1)V,
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For 0 <t <27%, the symbol e Inl is a classical symbol, and the kernel has the same size as @k (—x), or
as K (t,x) att =27k

The decomposition of [Fefferman 1973] was used in [Seeger, Sogge, and Stein 1991] to estimate the
kernel of oscillatory integral operators with nondegenerate phase functions, for example exp(—iP) for
a smooth metric. The key ingredient is that the phase function ¢(x, 1) can be linearized in 1 over the
support of each ¥}/, up to an error that behaves like an appropriate amplitude function.

Getting the correct kernel estimates for # < 1 requires better estimates on the phase function for it to
linearize over the support of W/]c}, ;- The needed estimates are precisely those of (4-7), and the corresponding
estimates for amplitudes are those of (4-8).

The proof of the estimates in (6-15) for a single term W“’ (t) or E"’ (z) would follow along the lines
of [Seeger, Sogge, and Stein 1991], using the decomposmon wk £ together with (4-7)—(4-8). We need,
however, to prove these estimates for a product of arbitrarily many terms [[; j B (trj), where ) r; = 1.
It is still appropriate to use the partition l/fk’ , for each term; however, we need a functlon space argument
in order to handle a product of terms since there is no hope for controlling the operator product using a
symbol calculus. We therefore work with a wave packet frame and function spaces using weighted norms
in that frame that grow with the distance to a given point (xg, vg) on the cosphere bundle. We prove that
the operator Eg’ (s) is bounded from the space weighted at (xg, vo) to the space weighted at its time-s
flowout (xg, vs). These function space estimates iterate and yield a convergent sum, which is sufficient to
prove the bounds in (6-15).

The wave packet frame. We will establish (6-15) for 27% < ¢ < 1; the proof for 0 < ¢ < 2% follows
by using the same proof as for r = 27%. We consider ¢ to be fixed for this section and suppress the
dependence of the frame on ¢; however, we note that all constants are uniform over ¢ € [0, 1].

We prove the estimate by studying the behavior of E]‘é’ () in a family of wave packets that form a frame
for functions that are frequency localized at scale 2. The wave packet frame that we use at scale 2 is essen-
tially a spatial dilation by # 1 of the scale #2 parabolic wave packets of [Smith 1998]. The only difference
is that our frame covers more than one dyadic region, but we provide the details here for completeness.

We will be expanding functions with Fourier transform supported in the annulus

Ap={n:§257 <l < § 2542
Let A = {n:32F~1 <|n| < 3252}, We construct a partition of unity on A, supported in A} , of the form

Z ﬂzt (7)? when n e A, Supp(IBI‘é’t) C Qllé,t’

VET](.[

. . . 1k . .
where Yy, is a collection of unit vectors separated by /=227 2, and B} (1) satisfies the following
estimates:

(v, 8) 02 BY, ()] < Cja 274 (17 32%) 711, (7-1)

Observe that Q}é ;» defined in (4-6), is contained in a rectangle of dimension ok+3 along the direction v,
and 1=225% along the directions orthogonal to v. For each v, let E k , be a rectangular lattice in R"
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with spacing 27 - 27¥=3 along the v-direction and spacing 27 - £2275 in directions orthogonal to v. Let
Cre ={(x,v):x € &} ,, v € Ti,}, which is a discrete subset of the cosphere bundle S*(R?). We use

y = (x, v) to denote a variable in S*(R4), and for y € I'k s we set
d—1

~ _3 _k(4+L —i
$y(n) =272 27K T il gy ().

Then, with (v, dy) denoting derivatives in directions perpendicular to v,

(vt 8y) 00 8y ()]

< Cp 2K 5 2MBL (=505l (1 2K (0 y — x) [+ 712K [y —x )N, (72)

Functions f € L?(R") with supp( f ) C Ay admit an expansion in {¢y }yery ,»

f= X ot o= [HO0)ay
V€Elk
We define a pseudodistance function on the cosphere bundle S*(Rd) by
di(x,v;x' V) = (v, x =X+ |V, x = x| + 1]y =V ]2+ x — x|

This is the parabolic pseudodistance of [Smith 1998] scaled like the wave packet frame, and it satisfies,
forallz > 0,

de(y;y") <4di(y;y) +4d: (v y"). (7-3)

It is also approximately invariant under the Hamiltonian flow ys for s <t. This was proven for C 1! metrics
in [Smith 1998]; we provide the proof here for metrics of bounded curvature.

Lemma 7.1. For some C and all 0 < s <t <1, and ys the projected Hamiltonian flow map for any
metric gy satisfying (3-1)—(3-3), we have

Cldi(v:v') <di(xs(0): xs(¥') < C de(y: 7).

Proof. Let n=v and n’ =V". If (x;, &) is the (nonprojected) Hamiltonian flow of (x, ), then ||&s|—1| Scg,
so we can replace vg by & in the distance function. From Corollary 3.2, when |5| = 1 we have the bounds
|0pxs| S5, |0xXs| + [0xEs| +195&s| S 1. and we deduce

|xg = Xs| + 116 — & | < X' = x|+l —nl.
Applying this also to y_s we obtain
R N TR R e PR e U e
By symmetry it thus suffices to show that

(1.5 = %) = (€. s — )| 074l = x> 2l = 2 (7-4)
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Let ¢ be the phase function for gps, and write x = V,¢(s, x5, ) and & = Vx¢(s, x5, 7). By homogeneity,
(71’ X/—X) - (SS» X; _xS> = (77, VWQO(X, X;, TI/) —VngO(S, Xs» 77)) - (VXQD(S, Xs» 7])’ x; _xS>

= (s, x5, 1) — (s, x5, ) — (x§— x5, V(5. x5, 1) — (0" =1, Vyo(s, x5, 1))
Observe that, by Theorem 3.3,

(" —n, Vaols, x5, ') — Vao(s, xs. M) < In' —nl(|xg — x| 4+ t|n" —nl)
St XL = xs 2+t =)

Consequently, it suffices to show that the error bound for the first-order Taylor expansion of ¢ (s, x§, 7’ ) —
@(s, x5, n) is bounded by the right-hand side of (7-4). The estimates (4-1)—(4-4) give [02¢x| <
|0x0pex| < 1, |8 ¢k | < |s|, and hence the remainder is dominated by

| 3—1

2 2
<317 xp—xgP+ 3 1|0’ =%,

|oes = xs % + |xg — x| 10" = nl + 1|7 —
giving the desired bound. O

For any given integer M > 0 and point yp € S *([Rd), we define a weighted norm space
1 By = 20+ 25700 ley (1P () = [ 3,005 d.
Y

For dyadically localized f, this norm roughly measures how far f is from being a wave packet centered
at yo. In the next subsection we will prove the following theorem.

Theorem 7.2. Suppose that 0 <s <t <1, yo € I'r s, and x5(yo) = (x5, vs), Where y is the projected
Hamiltonian flow for g. Then for all I, B, N, there are constants Cy g n so that

(Vi )28 (B (5)byo) (1)

<Cng /32k(d+l)t 2k|‘8|(z 222)|“|(l+2k|(vs,x Xs)|+1~ 12k|)c xs|2)_N.

(7-5)

In the remainder of this subsection we deduce (6-15) from Theorem 7.2. First we deduce || - |7,y (»)
mapping properties for B;’(s) from (7-5). The left-hand side of (7-5) vanishes unless Z(w,y) < 150
we may assume Z(w, ys) < %

Lemma 7.3. Suppose that f is supported in the set {n 1 Z(n,vg) < %}, and for all N, o, B we have
df1y _d—t
(v, 03)%08 ()] = Ciyp 2050 1= 5 2MB (525101 (1425 (v, y—x0) | +1712% |y—xo ) ™"

Let yo = (x0,v0). Then for all M > 0 we have || f ||pm,y, < Cm, where Cpp depends on only a finite
number of the Cy o .

Proof. Without loss of generality we assume that vg = e;. By the derivative estimates we have

1F ()] < Cn 270D T (2R gy |+ 27 Ry ),
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where for each N the value of Cy depends on only a finite number of Cy o g. Since ¢3y is supported
where || > 2K=4|v — e1], by Plancherel’s theorem we obtain for all N, and similar Cy,

ley ()l <Cn (1+ 28t v —e1]D) 2N, ¢, (f) = / ¢y () f(y) dx. (7-6)

By the pointwise estimates on f(y) and ¢, (y), we have
dily _d-1 N o
ey()] = Cy 2575 /(1+2"dt(y,e1;yo)) N1+ 2K, (i) TN dy.

By (7-3), noting that d;(y, e1; y,v) =t|v —eq|?, we have

1edi(v.y0) <di(y.e1:y0) +di(y.viy) +tlv—er|”.

Together with (7-6), this implies |c,, (f)] < Cn (1 + 2Kd,(y;y0))~N. The lemma then follows from the
bound

sup Y (1+28di(y:y) ™7 = ¢y (7-7)
v’ yE€lk
which follows from estimate (2.3) in [Smith 1998] after rescaling. O

The converse to Lemma 7.3 also holds; we need it only for « = 8 = 0, and prove that version in the
proof of Corollary 7.5 below.

An immediate consequence of Theorem 7.2 and Lemma 7.3 is decay estimates on the matrix coefficients
of §]‘é’ (s). Precisely, for all N we have

' / &y (N (BE (5)¢y) () dy| < Cy(1+ 2K, (y; xs(¥)) 7. (7-8)

We then use this to prove boundedness of Ez) (s) in the weighted norm spaces via the following lemma.

Lemma 7.4. Suppose that M >0, 0<s <t <1,and T : S(R?) — S'(R?) is a linear map such that the
matrix coefficients

aly.y') = / ¢y (1) (Thy) () dy
satisfy the bound
la(y. y")| < (1+ 2K d, (v ys(y)))) "M +d+D),

Then, uniformly over yg € S*(Rd), we have ”Tf”M,xs(yo) <Cum |l fllm,yo-

Proof. It follows from (7-7) that
sup ) la(y.y)l = C,
Yy

and, since d;(y; xs(y")) ~ d;(x—s(y):y’) by Lemma 7.1, we also have

sup » "la(y.y")| = C.
14 /
Y
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where C is independent of s, ¢ and k. By Schur’s lemma we conclude

1B () flo.xsve) < C Il Nlo,yo-

The weighted case M > 1 follows by noting that

(1+2%d, (v 15 (v0))) < (L +25d, (v; xs (YDA +25d (v v0)),

which follows from

di(y: xs(v0) < 4d:(y; xs(¥") +4d: (xs(v"): xs(v0)),

and the fact that d; (xs(y"): xs(v0)) ~ di(¥'. vo)- O
Corollary 7.5. Let xg denote the time-s projected Hamiltonian flow for . Then for 0 <s <t <1, and
all M >0,

1ER () f I xsv0) < Coa L £ 1,30,

with constant Cyy independent of s, t, vg, w, and k.

Proof. By Lemma 7.4 and the estimate (7-8), which holds also for Wk“’ (s) by the same proof, we have

1B (5).f 10,2 (v0) < Caa |f .3

The formula (6-8) for E,‘;’ (¢) and the group property of ys then show that

o0 m m+1

VERS) S Istasiry = D2 — =1/ Inay = Cor M || fllasy. 0

m=0
We conclude this section by deriving the bound (6-15) from Corollary 7.5. Write El? (t,x,y) =
(E]‘é’ ()8y)(x). Since El‘é’ () has the factor Y (D) on the right, we may write

(ER08)(x) = > (ER0)BL(D)*8y)(x).

\)GTk’[
The function t(D)25y has Fourier transform e~ ’"),BI‘C’ t(n)z. Up to a normalization factor, this
behaves like the frame element ¢, at y = (y,v), and it is easy to verify that for all M
1821 (D)28y lary < Cag 2850
By Corollary 7.5, letting y; = (x¢,v¢) = x¢(y,v) we have
E2(1)BY ,(D)2Sy|Iag.y, < Cag 26CG) =5 (7-9)
k k,t y Vit
This implies that, for all N,
~ d+1ly _d—1 — —
[(ER ()8, (D)?8y)(x)] < Cn 2K 20052 (14 2K (v x — ) | + 2507 — g )™V,
We see this using (7-9), that the frame coefficients {c,} of E,‘c" (DB t(D)28y satisfy for all M

leyr] < Cag 2K =T (1 42K d, (v 1y ) M.
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From estimates (7-2) on |¢,, (x)|, we follow the proof of [Smith 1998, Lemma 2.5] with y’ = (x’, V') to
bound ‘(E,‘c"(t)ﬂ,‘é’t(D)ZSy)(xﬂ by

d —
Cy 2K (3~ Yo oa+2%a )™M+ 28 (e vy )™M
v/ €lk.;
d—1

<2 Y (1 2K (e )y
U/ETk,[
< Cu 2T T (1 2K (g x — ) 4 250 e — [P TM S

Deriving (6-15) from Corollary 7.5 then reduces to showing that

D42 v x —x) |+ 2K e = DTV < Oy (1 + 2K dist(x, S, () .

veTy
If (X¢,V7) = x¢(y,V) and (x¢,v¢) = x¢(y, v), then by Corollary 3.2

4 |3~Ct—xt|
sl ———— =

- t.
[V —v]

E )]

. 1__k
Consequently, the points x; are separated by 12272 for v € Ty ;, and thus

Yoo+ x—x Pl < C

veTk.t

It therefore suffices to show that, for c¢; small enough, and for each v € Sd_l,
(e, x —xe)| + 17 x —x; |2 > L dist(x, S¢ (). (7-10)

Here, x; € S¢(y) for each v, and v is the unit normal to S;(y) at the point x;, in that (v, 9y, X¢[p=y) =0,
which follows by homogeneity.

We observe that, by scaling, it suffices to prove (7-10) in the case ¢ = 1. Precisely, (" !x;, v;) is the
image at time 1 of (+~'y, v) under the projected Hamiltonian flow for the metric gz (¢ - ), and t 1S, (y)
is the corresponding unit geodesic sphere centered at #~!y; hence the two sides of (7-10) dilate by the
same factor #. Furthermore, the metric g (¢ - ) satisfies conditions (3-1)—(3-3) with M = t2§ < 2%

Without loss of generality we assume v = e; and y = 0. We introduce the notation (x(w), n(w)) =
%1(0, w) to denote the mapping of the unit sphere S~ onto the unit conormal bundle of S1(0). By
Corollary 3.2, this map is C !-close to the map w — (@, w); precisely

[¥(©) = ] + |Vox (@) — Ty | + (@) = o] +[Von (@) = g| S cq.
As a consequence we may parametrize S1(0) N {x1 >0, [x'] < %} as a graph x; = F(x’), where

02(F(x) = V1= |xX"?)| Scq. | <2, X <3 (7-11)



DISPERSIVE ESTIMATES FOR THE WAVE EQUATION ON RIEMANNIAN MANIFOLDS 145

This holds for |a| < 1 by C! closeness of x(w) to @, and for |a| = 2 since
Vo F(x') = —n'(0(x))/n1((x"))

is C! close to —x'//1 — |x’|2.

The bound (7-10) is equivalent to proving, for x = (x1,x’) € R,
min [x — x(@)] < 4(|{n(er). x —x(en)] + [~ x(en)P).

We assume that |[x —x (e1)| < %; hence |x/| < %, as the bound is immediate otherwise. The left-hand side is

bounded above by |x1 — F(x’)], and the bound then follows by the Taylor expansion of F(x’) about x’(eq),
[x1— F(X)| < [x1 = F(x'(e1)) — (" = x"(e1), Var F (X (en))) | + |x" = x"(e1)|?
=ni(e))”" [(n(er). x —x(en)| + |x" —x'(e1) %,

where we use that | V2 F|| <2 for |x/| < % by (7-11) if ¢4 is small, and F(x'(e1)) = x1(e1).

Proof of Theorem 7.2. We follow the key idea of [Seeger, Sogge, and Stein 1991], that the action of a
Fourier integral operator on a function f whose Fourier transform is suitably localized can be decomposed
as a pseudodifferential operator acting on f, followed by a change of coordinates. Suitably localized
means that the phase function can be written as a phase that is linear in 7 plus a term that satisfies the
estimates of a zero-order symbol on the support of f (n). Here we take f = ¢,,, with f supported in the
set Q,‘é ; defined by (4-6), and the zero-order symbol estimates are those of Corollary 5.2. The estimates
of Corollary 4.2 will be used to establish the linearization of ¢ on Q,‘; .

We prove Theorem 7.2 with B}’ (s)¢y replaced by By (s); recall the definition (6-6) and (6-5). The
operator d, (D)l}k (D) is a mollifier on spatial scale 27% and commutes with differentiation, and hence
preserves the estimates of Theorem 7.2, and a,, (D)¢, satisfies the same conditions as ¢,. The terms
Bi+1(s) will follow the same proof as for By (s).

Without loss of generality we assume y9 = (0, e1). We need to establish the bounds of Theorem 7.2
for the function

(Be)pyo) () =232 KD 45 [ dontommpy s, vy () dn
We can express this in the form

(B (8)yo) (x) = 27227 () 5" / eI DMk XMy (5 x m)BEL () din,

where y(s,x) = V@i (s, x,e1), and where by (4-9) on the support of ﬂz‘t the function Ah(s, x,n) =
@K (s,x,n) —n-0pek (s, x, e1) satisfies

197, 0% 08 h(s, x, )| < Cjop 274 (1227 5)lel 23181,

This, together with Corollary 5.2 and (7-1), leads to the estimates

135,0%,08 ("X (5. x. BE, ()] < Cap 275 (1227 %)l 25181, (7-12)
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We now express
(Bic(5)¢yo) () = 255 F(x (5,3,
where
F(x,y) = z-%z—k("z“)zdz“/ el M th(sXmpy (5 x )L () d.

The estimates (7-12) and integration by parts leads to the bounds

104, 35/08 F (v, )| < Cy,jap 22712581 (17223) 11 4 25y 417126y 2y

We now use the chain rule to express x-derivatives of the composition of F(x, y) with y = y(s, x) as
a sum of terms,

Ox; F(x, y(5, X)) = (0x; F)(x, y(5, X)) + (Vy F)(x, y (5. X)) - 0x; y (5, X).

The 0y, in the first term on the right counts as a factor of 25 in the derivative estimates, which is better
than the conclusion of Theorem 7.2. Similar considerations apply to terms in the expansion of higher-order
derivatives. Since we will estimate individually each term arising in such an expansion, we therefore can
consider functions F that are functions of only y. That is, we assume for all N that

; _1 _k _ _
107,0% F(9)| < Civ,a,p 2% (7 222)1 (1 4 2Ky | + 7125y )7, (7-13)

and prove that the composition with y (s, x) satisfies for all N
13298 F(y (5. 30))| < Civap 2581 225)01 (1 4 2% (g, x — )|+ 172K x — g YN, (7-14)

where @, = (VSJ-, dy) denotes derivatives in directions perpendicular to vy.
Since y(s, xs) = 0, and the map x — y(s, x) is a globally bilipschitz map of R¥, with uniform bounds
on the map and its inverse, we have

|y (s, ) ~ |x —x]%,

with the ratio of the two sides close to 1 for ¢; small. For a constant ¢ close to 1, we also have
cvs = (Vxpi)(s, X5, 1) = (Vx 0y, 0x) (5, X5, €1) = (Vx y1) (5. Xs).

We also have the equality y; (s, x) = ¢k (s, x, e1) by homogeneity, which by (4-1) implies

1Bl =1,

’ -1
BENnGII=) osasra g5 s, (7-15)
Together with a first-order Taylor expansion these imply that, for 0 <t <1,
1G]+ 17y (s )P & [(vs, x = x5)| 17 —x [, (7-16)

with uniform bounds on the ratios. Together with (7-13) this gives (7-14) for j = o = 0.
To bound derivatives, we use the chain rule to express iﬂz 85 F(y(s, x)) as a sum of terms of the form

(O 9, F) (5 081 yr) - (B 0B y ) (1 91 ) o (0 171y,
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where
m+|6| m+|0|

a= Y a. B= > Bj. m+|0]<la|+]Bl.
Jj=1 j=1

The estimate (7-14) then follows from (7-13) and (7-16), together with the following bounds for the
derivatives of y(s, x) for |o| 4+ |8| = 1, and where 27% <t < 1:

|3za£y1(s, x)| = COl,ﬂ 2k("3|_1)([_%2%)|a|(1 + l_%2%|x —xs|),
5208 ) (s, x)| < Cy p 211 (1225l

The second of these holds by the stronger bound of C, g 25(@l+1B1=1 from Theorem 3.3, where if
|| = 0 we use that 2% < (t_%Z%)_l and |B| > 1. For the first, if |¢| = 1 and |8] = 0, we use (7-15)
and that (§,y1)(s, x5) = 0 to see that |#, y1(s, x)| < C |x — xs|. If |¢| > 2 or |8] > 1 then the estimate
follows directly from (7-15). O
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