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DISPERSIVE ESTIMATES FOR THE WAVE EQUATION ON
RIEMANNIAN MANIFOLDS OF BOUNDED CURVATURE

YUANLONG CHEN AND HART F. SMITH

We prove space-time dispersive estimates for solutions to the wave equation on compact Riemannian
manifolds with bounded curvature tensor, where we assume that the metric tensor is of W 1;p regularity
for some p > d , which ensures that the curvature tensor is well-defined in the weak sense. The estimates
are established for the same range of Lebesgue and Sobolev exponents that hold in the case of smooth
metrics. Our results are for bounded time intervals, so by finite propagation velocity they hold also on
noncompact manifolds under appropriate uniform geometry conditions.

1. Introduction

We assume throughout this paper that .M; g/ is a d -dimensional Riemannian manifold of C 1 structure
with the following property: there exists r0 > 0, C0 <1, and p 2 .d;1� such that for each z 2M there
is a C 1 coordinate chart ˆz W Br0 !M, with ˆz.0/D z, in which the induced metric gij on Br0 � Rd

satisfies
gij .0/D ıij ; sup

ij

kgij kW 1;p � C0:

As shown in [Taylor 2000, Chapter 3 §9] or Section 2 of this paper, the Riemannian curvature tensor
components Rijkl are then well-defined as distributions in W �1;p.Br0/. We make the assumption that
the Rijkl are measurable functions, and that for some C0 uniform over the coordinate charts,

sup
ijkl

kRijklkL1.Br0 / � C0:

In Theorem 2.2 we show that the Sobolev spaces H s.M/ for �2� s � 2 defined using local harmonic
coordinates are equivalent to those defined using fractional powers of ��g via the spectral calculus. For
�1� s � 2 the following Cauchy problem for the wave equation on .M; g/ can then be solved using the
spectral decomposition for �g and Duhamel’s formula:

.@2t ��g/u.t; x/D F.t; x/ 2 L
1.Œ�T; T �IH�2.M//;

u.0; x/D f .x/ 2H s.M/;

@tu.0; x/D g.x/ 2H
s�1.M/:

(1-1)

This material is based upon work supported by the National Science Foundation under Grant DMS-1500098.
MSC2010: primary 58J45; secondary 35L15.
Keywords: wave equation, dispersive estimates.

101

http://msp.org/paa/
http://dx.doi.org/10.2140/paa.2019.1-1
http://dx.doi.org/10.2140/paa.2019.1.101
http://msp.org


102 YUANLONG CHEN AND HART F. SMITH

In this paper we prove two types of dispersive estimates on the solution u, under the above assumptions
on .M; g/. Recall that a triple .s; q; r/ with 2� q; r �1 is said to be admissible for the wave equation if

1

q
C
d

r
D
d

2
� s;

1

q
�
d�1

2

�
1

2
�
1

r

�
:

Theorem 1.1 (Strichartz estimates). If .s; q; r/ and .1� s; Qq; Qr/ are admissible, and r; Qr <1, then for a
positive T depending only on .M; g/, solutions to (1-1) defined using the spectral decomposition of �g

satisfy

kukLq.Œ�T;T �ILr .M//CkukL1.Œ�T;T �IH s.M//Ck@tukL1.Œ�T;T �IH s�1.M//

� C
�
kf kH s.M/CkgkH s�1.M/CkF kL Qq0 .Œ�T;T �ILQr0 .M//

�
:

Note that under these assumptions 0� s � 1, and since Qq � 2 we see that H
3
2 .M/� LQr.M/; hence

F 2 L1.Œ�T; T �IH�
3
2 .M//.

The next estimate is due in the smooth case to Mockenhaupt, Seeger and Sogge [1993]. Here we
consider only the critical exponent qd , but similar results with sd � s � 2 hold by Sobolev embedding.

Theorem 1.2 (square function estimate). Let qd D 2.d C 1/=.d � 1/, and sd D 1=qd . Then for a
positive T depending only on .M; g/, solutions to (1-1) satisfy

kukLqd .M IL2.Œ�T;T �// � C.kf kH sd .M/CkgkH sd�1.M/CkF kL1.Œ�T;T �IH sd�1.M///:

A straightforward consequence of the square function estimate are the following L2! Lq bounds for
unit-width spectral projection operators, which were originally established for smooth metrics in [Sogge
1988].

Corollary 1.3. Suppose that � � 0, and let …Œ�;�C1� denote the L2.M/ projection onto the span of
eigenfunctions f�j g such that ��g�j D �

2
j �j with �j 2 Œ�; �C 1�. Then for some C depending only on

.M; g/,

k…Œ�;�C1�f kLq.M/ � C �
d. 1

2
� 1
q
/� 1

2 kf kL2.M/; qd � q �1:

Corollary 1.3 is proven for qD qd from Theorem 1.2, and for q > qd it follows by Sobolev embedding.
See [Smith 2006a] for details. It is shown there that the q D1 case, which is related to the spectral
counting remainder estimates of Avakumović, Levitan and Hörmander, holds more generally on compact
manifolds with metrics g of Lipschitz regularity.

The first version of Strichartz estimates was obtained globally on RdC1 by Strichartz [1970; 1977]
for s D 1

2
and q D r D 2.d C 1/=.d � 1/. The results were subsequently extended to other values of the

exponents, and to the setting of smooth Riemannian manifolds using a Fourier integral representation of
the fundamental solution. More details can be found in [Sogge 1993; Ginibre and Velo 1997; Keel and
Tao 1998; Lindblad and Sogge 1995]. Of particular interest are the critical indices, when equality holds
in the second admissibility condition.

For a nonsmooth metric g, the standard constructions of the fundamental solution do not work.
However, in [Smith 1998] one of us used paradifferential techniques and wave packet parametrices to
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prove homogeneous Strichartz estimates in dimensions d D 2; 3 under the condition that the metric g
is C 1;1. For all dimensions this is the minimal regularity condition on g in the context of Hölder spaces
that implies the Strichartz estimates. Indeed, Smith and Sogge [1994] produced explicit examples of
C 1;˛ metrics for which the homogeneous Strichartz estimates fail, for each 0 < ˛ < 1.

The key idea in handling nonsmooth metrics is to introduce a paradifferential approximation P top
��g, in that P 2C�g behaves as a first-order operator on a suitable range of Sobolev spaces. By

energy estimates it then suffices to establish the bounds of Theorems 1.1 and 1.2 when �g is replaced by
�P 2 in (1-1). The operator P has symbol of class S1

1; 1
2

and is obtained by mollifying the coefficients of
g over scale 2�

k
2 when acting on functions at frequency scale 2k.

One then seeks a construction of the evolution operator e�itP for which the desired dispersive bounds
can be proven. In [Smith 1998], an approximation E.t/ to e�itP was obtained by working in a frame of
dyadic-parabolic wave packets (curvelets). A key property of such wave packets is that the action of e�itP

on each element of the frame is well approximated by rigid translation of the packet along the Hamiltonian
flow of P, and E.t/ was defined as this rigid motion. This operator E.t/ failed to satisfy the unitary group
propertyE.t/E.s/�DE.t�s/, however, which is a crucial requirement for the established proofs of disper-
sive bounds such as in [Keel and Tao 1998]. This limited the results of [Smith 1998] to low dimensions. The
Strichartz estimates of Theorem 1.1 forC 1;1 metrics and general dimensions were subsequently established
by Tataru [2000; 2001; 2002], where space-time bounds on the FBI transform were used. Smith [2006b]
used a modified FBI transform to translate the problem to phase-space, and e�itP was approximated
on the transform side by the Hamiltonian flow map. This forms a unitary group, and the estimates in
Theorems 1.1 and 1.2 (with F D 0 in Theorem 1.1) were established for C 1;1 metrics, in all dimensions.

For metrics of bounded curvature the paradifferential construction of the self-adjoint operator P goes
through as above, provided one works in harmonic coordinates on .M; g/. In such coordinates the metric g
has second derivatives belonging to BMO, which is sufficient to show that P 2C�g maps H s!H s�1

for a range of s. The wave packet methods fail to give a useful construction of e�itP, however, since the
error estimates for the rigid translation or Hamiltonian flow approximations depend explicitly on pointwise
bounds on @2xgij .x/. On the other hand, by the Jacobi variation formula, L1 bounds on the Riemannian
curvature tensor imply that the geodesic and Hamiltonian flows are bilipschitz. A consequence is that the
solution to the eikonal equation in any local harmonic coordinate system has bounded second derivatives,
the same regularity as for C 1;1 metrics.

This naturally leads us in this paper to imitate the Lax parametrix construction for e�itP. It turns out
that solving the transport equations for the amplitude produces no further improvement beyond setting the
amplitude to be identically 1, as all terms in the expansion of the amplitude would be symbols of order 0,
due to the fact that the symbol of P is of class S1

1; 1
2

. On the other hand, to have a unitary group we
need work with the exact operator e�itP. We achieve this by producing e�itP exactly as an iterative
expansion of the Lax approximation, which we show converges uniformly on finite time intervals in the
H s operator norm for every s 2 R.

To prove the dispersive estimates of Theorems 1.1 and 1.2 we establish bounds on the integral kernel
of e�itP localized dyadically in frequency. These bounds capture the pointwise decay of the fundamental
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solution away from the light cone, and are of the exact same form as for smooth metrics. An advantage
of this proof is that we can obtain the inhomogeneous estimates stated in Theorem 1.1. We establish the
kernel bounds using a version of the wave packet frame of [Smith 1998] rescaled by time t . This method
is well adapted to handle the multiple products arising in the iterative expression for e�itP, since the
bounds can be phrased in terms of operator bounds in certain weighted norm spaces.

The proof of Theorems 1.1 and 1.2 is composed of multiple distinct steps, and we divide it up into
sections as follows. A more detailed summary of each section is included at its beginning.

In Section 2, we present the details of harmonic coordinates on .M; g/ and the regularity results for g in
such coordinates. The procedure is similar to that in [Taylor 2000, Chapter 3, §9]. We then reduce matters
to working with a compact perturbation of the Euclidean metric on Rd. We introduce the paradifferential
operator approximation P, and equate the estimates of Theorems 1.1 and 1.2 to Lebesgue space mapping
properties for e�itP.

In Section 3, we use the Jacobi variation formula to study the regularity of the geodesic flow for the
metric gk that is obtained by mollifying g at scale 2�

k
2 . The estimates on the derivatives of the geodesic

flow are exactly those obtained in the case g 2 C 1;1.
In Section 4, we use the results derived in Section 3 and a dilation argument to prove symbol-type

estimates on the solution 'k.t; x; �/ of the eikonal equation for gk . A key result is obtaining better estimates
for small t , which is crucial to proving the dispersive estimates on the kernel of e�itP when jt j � 1.

In Section 5, we introduce an approximation W.t/ to e�itP, which is a sum over k of terms

.Wk.t/f /.x/D
1

.2�/d

Z
ei'k.t;x;�/  k.�/ Of .�/ d�;

where  k is a Littlewood–Paley partition of unity. We show that

.@t C iPk/.Wk.t/f /D Bk.t/f;

where Bk.t/ is an oscillatory integral operator with phase 'k , and symbol bk.t; x; �/ of order 0 that
satisfies derivative bounds similar to those for 'k .

Section 6 is concerned with energy flow properties of iterated compositions of W.t/ and B.t/, which
arise in the expansion of e�itP. In particular, we show that multiple compositions preserve dyadic
localization in frequency up to smoothing errors. Thus, in proving dispersive estimates for e�itP we need
only handle the composition of terms Wk and Bk , all of which are localized at the same dyadic scale. We
also prove “sideways” energy estimates that arise in the proof of Theorem 1.2.

In Section 7 we prove that, for small t , the kernel Kk.t; x; y/ of e�itP k.D/ satisfies, modulo a
smoothing operator, the same bounds as for smooth metrics:

jKk.t; x; y/j � CN 2
kd .1C 2kjt j/�

d�1
2 .1C 2kdist.x; St .y///�N;

where St .y/ is the geodesic sphere centered at y and dist. � ; � / the geodesic distance for gk . Together with
standard arguments, these estimates yield Theorems 1.1 and 1.2. The proof of this estimate proceeds, for
a given value of t , by representing e�itP k.D/ in a wave packet frame that is obtained by scaling by jt j
the dyadic-parabolic frame from [Smith 1998]. The kernel estimates follow by showing that the operator
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e�itP k.D/ maps a frame element at time 0 to a similar function translated along the Hamiltonian flow
through its center. This fact is deduced from showing the same result for the terms Wk.s/ and Bk.s/ for
0� s � t that arise in the iterative formula for e�itP.

2. Preliminaries and reduction to the model operator

In this section we establish regularity estimates for the metric g in local harmonic coordinate charts. We
then consider Sobolev spaces on M, and define the wave group for

p
��g using the orthonormal basis

for L2.M/ consisting of eigenfunctions of �g . We conclude by reducing the proof of Theorem 1.1 to
estimates for the evolution group e�itP of the self-adjoint first-order pseudodifferential operator P on Rd,
where P is an extension to Rd of a paradifferential approximation to

p
��g in one of a finite cover

by M of local harmonic coordinate charts.

Harmonic coordinates on .M; g/. We start with the assumption that .M; g/ is a Riemannian manifold
of C 1 structure with the following condition: there exists r0 > 0, C0 <1, and p 2 .d;1�, and for each
z 2M a coordinate chart ˆz W Br0 !M , with ˆz.0/D z, so that the induced metric g on Br0 � Rd

satisfies
gij .0/D ıij ; sup

ij

kgij kW 1;p � C0:

Since W 1;p functions are of Hölder regularity 1� d
p
> 0, by shrinking r0 if needed we may additionally

assume that, given c0 > 0 to be determined,

sup
x2Br0

jgij .x/� ıij j � c0:

Following [Taylor 2000, Chapter 3 §9], in particular Chapter 3, Proposition 9.1 and the comments
following Chapter 3, (9.39) in that paper, after replacing r0 by �0 D �0.d; p; C0; c0/, we may assume
that the induced coordinate functions, f iz W ˆz.B�0/! R, are harmonic functions with respect to the
Laplace–Beltrami operator of g, and that overlapping harmonic coordinate charts have transition functions
of regularity W 2;p on their overlaps. The harmonic coordinates are related to the coordinate functions of
ˆz by aW 2;p change of coordinates over Br0 , and it follows that the original coordinates were necessarily
of regularity W 2;p � C 1;1�

d
p on their overlaps. Consequently, M is a manifold with W 2;p structure.

This is consistent with the fact that a metric g maintains its W 1;p regularity under a W 2;p change of
coordinates, which can be seen by (2-1) below.

For every integer m� 0, there is a continuous linear extension operator of W m;p.B�0/ to W m;p.Rd /;
see, e.g., [Stein 1970, Chapter VI, §3, Theorem 5]. We may thus apply [Taylor 2000, Chapter 2,
Proposition 1.1], together with the inclusions

W 1;p.Rd /� L1.Rd /; H 1.Rd /DW 1;2.Rd /� L
2p
p�2 .Rd /;

to see that the following hold, both on Rd and B�0 :

kfgkW 1;p � Ckf kW 1;pkgkW 1;p ; kfgkH1 � Ckf kW 1;pkgkH1 : (2-1)
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The Riemannian curvature tensor R for g is given in coordinates by

Rijkl D
1

2

�
@2gik
@xj @x`

C
@2gj`
@xi @xk

�
@2gi`
@xj @xk

�
@2gjk
@xi @x`

�
CQ.g; @g/;

whereQ.g; @g/ is a quadratic form in first-order derivatives of gij , with coefficients given by a combination
of coefficients of g; hence Q.g; @g/2L

p
2 when g2W 1;p with p > d . Then R is defined as a distribution,

and our key assumption is that Rijkl is a bounded measurable function such that uniformly in the local
coordinates Fz ,

sup
ijkl

kRijklkL1.B�0 / � C0:

This is implied by assuming that R is a measurable function, together with the geometric condition that
for all continuous vector fields vj ,

khR.v1; v2/v3; v4ikL1.M/ � C0 if kg.vj /kL1.M/ � 1:

In harmonic coordinates, the Ricci tensor Ric can be written, see for example [DeTurck and Kazdan
1981], in the form

Ricij D
X
mn

@xm.g
mn @xngij /CQ.g; @g/:

Since Ricij 2 L1.B�0/, following [Taylor 2000, Chapter 3, §10] we conclude gij 2W 2;q.B�/ for all
� < �0 and all q <1; hence gij 2 Lip.B:9�0/.

Take � 2 C1c .B:8�0/ with � D 1 on B:7�0 , and � 2 C1c .B:9�0/ with �D 1 on B:8�0 , and assume �
and � take values in Œ0; 1�.

We form a Riemannian metric Qgij D � gij C .1� �/ıij on Rd, and uniformly elliptic coefficients
aij D� gijC.1��/ıij on Rd. Note thatQ.g; @g/2L1.B:9�0/ since g2Lip.B:9�0/. Then the following
holds globally on Rd :

dX
m;nD1

@xm.a
mn @xn Qgij / 2 L

1
c :

Since the amn are globally Lipschitz, from [Taylor 2000, Chapter 3, Proposition 10.3] we conclude that
@2x Qgij 2 BMOc.R

d /; more precisely @2x Qgij belongs to BMO.Rd / and is supported in B:8�0 .
Note that the Riemannian curvature tensor zR of Qg belongs to L1c .R

d /, where we use that Qg is Lipschitz,
so zRD �R modulo products of g and @xg and functions in C1c .B:9�0/. After shrinking �0 by a factor
of 2, we conclude:

Lemma 2.1. Given c0 > 0, there exists �0 > 0 and C0 <1 so that for each z 2M there is a harmonic
coordinate chart ˆz W B�0 !M, with ˆz.0/D z, such that the induced metric on B�0 agrees with the
restriction of a metric g defined on Rd that satisfies gij D ıij if jxj> 2�0, and

k@2xgij kBMOCkgij kLipCkRijklkL1 � C0; kgij � ıij kL1 � c0:

In particular, gij � ıij belongs to W 2;q
c .Rd / for all q <1.
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We now cover M by a finite collection of harmonic coordinate charts ĵ � ˆzj W B�0 !M, each
of which satisfies the conditions of Lemma 2.1, such that there is a partition of unity �j on M with
supp.�j /� ĵ .B 1

3
�0
/ and �j ıˆi 2W 2;p.B�0/ for each i; j . In particular, �j ı ĵ 2W

2;p
c .B�0/.

By (2-1), multiplication by �j ı ĵ maps H s
loc.B�0/ into H s

c .B�0/ for s D 0; 1; 2. By interpolation
this holds for 0� s � 2. We may then introduce Sobolev spaces H s.M/�L2.M/, for 0� s � 2, by the
condition

f 2H s.M/ () f ı ĵ 2H
s
loc.B�0/ for all j;

kf kH s.M/ D

X
j

k.�jf / ı ĵ kH s.Rd /:
(2-2)

If g 2H s
c .B�0/ then

k.�j �g ıˆ
�1
i / ı ĵ kH s � CkgkH s

for C depending on the support of g. This holds for s D 0; 1 since ˆ�1i ı ĵ is a C 1 diffeomorphism. It
holds for s D 2 since D.ˆ�1i ı ĵ / 2W

1;p is a multiplier on H 1 by (2-1). It then holds by interpolation
for 0� s � 2. Consequently, there are natural continuous inclusions H s

c .B�0/!H s.M/ for 0� s � 2
given by g! g ıˆ�1j , and one may identify H s.M/ with a closed subspace of the finite direct sum
over j of H s.B�0/.

An element of .H s/� thus induces an element of H�sloc .B�0/, and if we identify H�s.M/ with .H s/�

for 0� s � 2, then the condition (2-2) holds for �2� s � 2, with approximate equality for the norm.
We observe here the following regularity property for �g in harmonic coordinates, which follows,

for example, from [Gilbarg and Trudinger 1983, Theorem 8.9]. Suppose that u 2H 1.B�0/ is a weak
solution to �guD f , where f 2 L2.B�0/. Then u 2H 2.B�/ for all � < �0, and

kukH2.B�/
� C� .kukH1.B�0 /

Ckf kL2.B�0 /
/: (2-3)

The Sobolev spaces for jsj � 2 can also be characterized using the spectral decomposition of �g on
L2.M/. Consider the quadratic form on H 1.M/ given by

Q.u; v/D�

Z
Nu .�gv/ dmg D

Z
g.d Nu; dv/ dmg:

Then Q is symmetric, nonnegative, and coercive. By the Rellich compactness theorem there is a complete
orthonormal basis fvj g of L2.M; dmg/ that diagonalizes Q, in that for f; g 2H 1.M/

Q.f; g/D
X
j

�2j cj .f / cj .g/; cj .f /D

Z
M

Nvj f dmg;

and 0D �0 � �1 � � � � is a sequence of real numbers converging to1. The vj are weak solutions in
H 1.M/ to ��gvj D �

2
j vj ; hence (2-3) gives kvj kH2.M/ � C �

2
j . It follows that cj .f / can be defined

for f 2H s.M/ when �2� s � 0 as the action of f on Nvj .
The operator .1��g/ is equivalent to multiplication by .1C�2j / in the basis fvj g, and the following

theorem then gives a more natural definition of H s.M/.
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Theorem 2.2. For �2� s � 2, the mapping f !fcj .f /g1jD0 defines a homeomorphism of H s.M/ with
the space `2.N; .1C�2j /

s/. In particular, uniformly over �2� s � 2, we have

kf k2H s.M/ �

1X
jD0

.1C�2j /
s
jcj .f /j

2; cj .f /D

Z
M

f Nvj dmg;

and
P1
jD0 cj .f / vj converges to f in the topology of H s.M/.

Proof. The theorem holds for s D 0 by orthonormality, and for s D 1 since kf k2
H1 � kf k

2
L2
CQ.f; f /.

For s D 2, we note that the partial sums
NX
jD0

cj ..1��g/f / vj D

NX
jD0

.1C�2j /cj .f / vj D .1��g/

NX
jD0

cj .f / vj

converge in L2.M/ to .1 ��g/f if f 2 H 2.M/. It follows by elliptic regularity that
P
j cj .f / vj

converges in H 2.M/ to f . Surjectivity onto `2.N; .1C�2j /
2/ follows similarly. The theorem follows for

0� s � 2 by interpolation, and for �2� s � 0 by duality. �

We note that the proof also shows that ��g conjugates to multiplication by f�2j g in the basis fvj g, as
a map from H s.M/!H s�2.M/, provided 0� s � 2.

The wave equation on .M; g/. For data .f; g/ 2 L2.M/˚H�1.M/ and F 2 L1t .Œ�T; T �IH
�2.M//

we define the solution of the Cauchy problem (1-1) to be

u.t; x/D

1X
jD0

�
cos.t�j / cj .f /C��1j sin.t�j / cj .g/C

Z t

0

��1j sin..t � s/�j / cj .F.s; � //
�
vj .x/; (2-4)

where we set 0�1 sin.0t/ D t . We show here that Theorem 1.1 can be deduced from the following
assertion:

Assume that u 2 C 0.H s.M//\C 1.H s�1.M//, and that u is given by (2-4). Then for s; q; Qq; r; Qr as in
Theorem 1.1, the following estimate holds:

kukLqt .Œ�T;T �ILr .M//�C
�
kukL1t .Œ�T;T �IH s.M//Ck@tukL1t .Œ�T;T �IH s�1.M//CkF kL Qq

0

t .Œ�T;T �IL
Qr0 .M//

�
:

To see that this result implies Theorem 1.1, consider first the case F D 0. Then by the spectral
representation of u we have

kukL1t .Œ�T;T �IH s.M//Ck@tukL1t .Œ�T;T �IH s�1.M// � kf kH s.M/CkgkH s�1.M/;

and Theorem 1.1 follows from the assertion. We apply this to the triple .1� s; Qq; Qr/ and use duality to see
that, when f D g D 0,

kukL1t .Œ�T;T �IH s.M//Ck@tukL1t .Œ�T;T �IH s�1.M// � CkF kL Qq
0

t .Œ�T;T �IL
Qr0 .M//

:

The continuity of u and @tu follows by translation continuity, and Theorem 1.1 then follows from the
assertion for the case F ¤ 0.
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As a result we may assume that

u 2 C 0.H s.M//\C 1.H s�1.M//\C 2.H s�2.M//;

and in particular, @2t uD�gu in the weak sense on B�0 in each of the local harmonic coordinate charts ĵ .
If the data .f; g; F / is localized in ĵ .B 1

3
�0
/, then finite propagation velocity shows that u.t/ is

supported in ĵ .B 2
3
�0
/ if jt j � 1

6
�0, where we use W 2;p regularity of g for all p <1, and closeness of

gij to ıij for c0 small.
Using the partition of unity �j , we can reduce the proof of Theorem 1.1 to the case that the Cauchy

data is supported in ĵ .B 1
3
�0
/, and thus work on Rd with a metric satisfying the conditions of Lemma 2.1.

After rescaling space and time by a factor R � 1, where R�1C0 � cd , we can reduce Theorems 1.1
and 1.2 with T D 1

6
R�1�0 to the following Theorem 2.3. The constant cd will be fixed depending only

on the dimension, and in particular will be small enough to rule out conjugate points for jt j � 1.

Theorem 2.3. Assume g is a Riemannian metric on Rd such that for a prescribed constant cd depending
on the dimension d ,

kRijklkL1 Ckgij � ıij kLipCk@
2
xgij kBMO � cd :

Assume that .s; q; r/ and .1� s; Qq; Qr/ are admissible with r; Qr <1, and let u 2 C 0.Œ0; 1�IH s.Rd //\

C 1.Œ0; 1�IH s�1.Rd // be a weak solution to

.@2t ��g/uD F; u.0; � /D f; @tu.0; � /D g:

Then there is a constant C <1, depending only on d , so that

kukLq.Œ0;1�ILr .Rd // � C
�
kukL1.Œ0;1�IH s.Rd //Ck@tukL1.Œ0;1�IH s�1.Rd //CkF kL Qq0 .Œ0;1�ILQr0 .Rd //

�
:

If qd D 2.d C 1/=.d � 1/ and s D sd D q�1d , then

kukLqd .Rd IL2.Œ0;1�// � C
�
kf kH sd .Rd /CkgkH sd�1.Rd /CkF kL1.Œ0;1�IH sd�1.Rd //

�
:

The model operator P . We construct here the paradifferential approximation to
p
��g, where we will

assume that g is a metric on Rd that satisfies the conditions of Theorem 2.3.
We fix a family of dyadically supported functions ˇk.�/ for k � 0 such that ˇk.�/D ˇ1.21�k�/ if

k � 1, and such that  k.�/D ˇk.�/2 gives a Littlewood–Paley partition of unity. We will assume that

supp.ˇ1/�
˚
9
10
� j�j � 20

9

	
; ˇ0.�/

2
C

1X
kD1

ˇk.�/
2
D 1:

We introduce a family of metrics gk.x/ that are mollifications of g.x/ on spatial scale 2�
k
2 . Precisely, fix

a radial function � 2 C1c .B1/ so thatZ
�.x/ dx D 1;

Z
x˛�.x/ dx D 0 if 1� j˛j � 3:
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For k � 1 define a smooth metric gk on Rd by

.gk/
ij .x/D 2

kd
2

Z
�.2

k
2 .x�y// gij .y/ dy:

From the conditions on g in Theorem 2.3 it follows that kgk � IkLip � cd . Also,

k@ˇxgij
k
kL1 � C˛

�
1C log.k/; jˇj D 2;
2
k
2
.jˇ j�2/; jˇj � 3:

The estimate for jˇj D 2 holds when k D 1 since @2x.� � g/ D .@x�/ � .@xg/. For k � 2 we use that
�.2

1
2 � /��. � / is an H 1-atom, and @2xg 2 BMO.Rd /. The estimate for jˇj � 3 follows by writing

@ˇx .gk/
ij .x/D 2

k
2
.dCjˇ j�2/

Z
.@ˇ�2x �/.2

k
2 .x�y//@2ygij .y/ dy;

and using that @�x� is an H 1-atom, with norm C˛, when j� j � 1.
We also note here the bound

k@ˇx .gk � gk�1/kL1 � Cˇ 2
�kC 1

2
jˇ jk : (2-5)

For this, write

�.�/��.2
1
2 �/D j�j2�.�/; � 2 S.Rd /; �.0/D 0:

Then, setting �k.�/D �.2�
k
2 �/, we have

gk � gk�1 D 2
�k
O�k � .�g/:

The bound (2-5) then follows from [Stein 1993, IV.1.1.4] as above.
Many of the steps in subsequent estimates use only the weaker estimates that follow from the Lipschitz

bounds on g,

k@ˇxgij
k
kL1 � C˛

�
1; jˇj � 1;

2
k
2
.jˇ j�1/; jˇj � 2:

(2-6)

Define pk.x; �/D
�Pd

i;jD1 gij
k
.x/ �i �j

� 1
2 , so that pk.x; �/ is homogeneous of degree 1 in � . Then by

(2-6) and the conditions of Theorem 2.3

jpk.x; �/� j�jjC j@xpk.x; �/j � cd j�j;

j@˛� @
ˇ
xpk.x; �/j � C˛;ˇ2

k
2

max.0;jˇ j�1/
j�j1�j˛j:

(2-7)

Hence, @ˇxpk.x; �/ k.�/ 2 S11; 1
2

, uniformly over k � 1, if jˇj � 1. Similarly, by (2-5) we see that

.pk˙1�pk/ k 2 S
0

1; 1
2

uniformly over k: (2-8)

Define

P D ˇ0.D/
2
C
1

2

1X
kD1

ˇk.D/
�
pk.x;D/Cpk.x;D/

�
�
ˇk.D/;



DISPERSIVE ESTIMATES FOR THE WAVE EQUATION ON RIEMANNIAN MANIFOLDS 111

and let p.x; �/ be the symbol of P. Then P is self-adjoint, and the S1; 1
2

pseudodifferential calculus
shows that

p.x; �/�

1X
kD1

pk.x; �/ k.�/ 2 S
0

1; 1
2

:

In particular,
@ˇxp 2 S

1

1; 1
2

for jˇj � 1:

We note for future use that the Gårding inequality for P follows easily. It can be verified by letting

b.x; �/D

�
 0.�/C

1X
kD1

pk.x; �/ k.�/

�1
2

:

Then b.x;D/�b.x;D/�P 2 Op.S0
1; 1
2

/; hence for f 2H
1
2 , and some real C1

hPf; f i � �C1 kf k
2
L2
: (2-9)

Lemma 2.4. The following holds for 0� s � 2:

kP 2uC�gukH s�1.Rd / � CkukH s.Rd /:

Proof. By (2-7), we deduce that @ˇxpk.x; �/ˇk.�/ 2 S11; 1
2

for jˇj � 1, with uniform bounds over k.
Furthermore, ˇk has disjoint support from ǰ if jj � kj > 1. The composition calculus, together with
(2-8), thus shows that

P 2 D

1X
kD0

� dX
i;jD1

gij
k
.x/DiDj

�
 k.D/C r.x;D/; r.x; �/ 2 S1

1; 1
2

;

and in particular r.x;D/ WH s!H s�1 for all s. We next write

��g D

dX
i;jD1

gij .x/DiDj C det.g/�
1
2 .Di .det.g/

1
2 gij //Dj :

By (2-1) we see that det.g/�
1
2 .Di .det.g/

1
2 gij // 2W 1;p is a multiplier on H s for jsj � 1, so the second

term maps H s!H s�1 for 0� s � 2.
We thus need to establish that, for each i; j , we have 1X

kD0

.gij .x/� gij
k
.x// k.D/Diu


H s

� CkukH s if � 1� s � 1: (2-10)

By the vanishing moment condition on the radial function � 2 C1c , we can write

1� O�.�/D j�j2h.�/; where j@˛h.�/j � C˛

�
min.1; j�j2�j˛j/; j�j � 1;
j�j�2�j˛j; j�j � 1:

For j; k � 0, we let hj;k.�/D  j .�/h.2�
k
2 �/ and then have

j@˛� hj;k.�/j � C˛2
�j2j�kj 2�j j˛j: (2-11)
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That is, f2j2j�kjhj;kg1jD0 satisfies the derivative estimates and localization properties of a Littlewood–
Paley partition of unity in j , uniformly over k. We then write

g� gk D 2
�k
1X
jD0

gj;k; where gj;k D�.2�/
�n Ohj;k � .�g/:

We observe that

supp.Ogj;k/� f2
j�1
� j�j � 2jC2g; kgj;kkL1 � 2

�j2j�kj:

For the second estimate we use that k Ohj;k � .�g/kL1 � C 2�j2j�kjk�gkBMO. This follows for j ¤ 0
from dilation invariance of BMO and the boundZ

hj;k.x/ dx D 0; jhj;k.x/j � C 2
�j2j�kj 2jn.1C 2j jxj/�n�1:

See for example [Stein 1993, IV.1.1.4]. For j D 0 we write g0;k D .r Oh0;k/� .rg/.
If j < k � 1, the function gj;k  k.D/u has Fourier transform supported in f2k�1 � j�j � 2kC2g, so

we can use orthogonality to estimate the corresponding terms in (2-10) over j < k� 1, 1X
kD0

k�2X
jD0

2�kgj;k k.D/Du
2
H s

� C

1X
kD0

k�2X
jD0

2�kgj;k k.D/Du
2
H s

� C

1X
kD0

� k�2X
jD0

2�j2j�kjk k.D/ukH s

�2

� C

1X
kD0

k k.D/uk
2
H s � Ckuk

2
H s :

If j > k C 1, then gj;k k.D/u is frequency supported in f2j�1 � j�j � 2jC2g, and we estimate the
corresponding terms in (2-10) over j > kC 1, 1X

kD0

1X
jDkC2

2�kgj;k k.D/Du

H s

�

1X
kD0

1X
jDkC2

2�kkgj;k k.D/Du kH s

� C

1X
kD0

1X
jDkC2

2�kCjskgj;k k.D/DukL2

� C

1X
kD0

1X
jDkC2

2k.1�s/Cj.s�2/k k.D/ukH s

� C

1X
kD0

2�kk k.D/ukH s � CkukH s :

It remains to handle the case jj � kj � 1. For this, we note that, by (2-11), the function ak.�/ WD
2k
P
jj�kj�1hj;k.�/ satisfies the properties of a Littlewood–Paley partition of unity, as does the function
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2�k k.D/D WD Q k.D/. We then rewrite the remaining terms in (2-10) as 1X
kD0

2�k.ak.D/�g/. Q k.D/u/

H s

:

For �1� s � 0, we can dominate this using the inequality 1X
kD0

.ak.D/�g/.2�k Q k.D/u/

L2
� Ck�gkBMOkukH�1 : (2-12)

This inequality is a discrete version of Theorem 33 of [Coifman and Meyer 1978]; for completeness we
sketch the proof here. The key estimate is that

d�D

1X
kD0

j.ak.D/�g/.x/j2dx ı2�k .t/

is a Carleson measure, and kd�kC � Ck�gk2BMO. This follows from the proof of [Stein 1993, IV.4.3,
(37)], which goes through using that fak.2k�/g1kD0 is a uniformly bounded set in C1c

�
1
4
� j�j � 8

�
. To

verify (2-12) we test the left-hand side against h 2L2.Rd /. Fix a Schwartz function � with �.�/D 1 for
j�j � 8. Then since .ak.D/�g/. Q k.D/u/ is frequency supported in j�j � 2kC3, we haveˇ̌̌̌Z
Nh

1X
kD0

.ak.D/�g/.2�k Q k.D/u/ dx
ˇ̌̌̌

D

ˇ̌̌̌Z 1X
kD0

.�.2�kD/h/ .ak.D/�g/.2�k Q k.D/u/ dx
ˇ̌̌̌

�

�Z 1X
kD0

j�.2�kD/hj2 jak.D/�gj2 dx
�1
2
�Z 1X

kD0

j2�k Q k.D/uj
2 dx

�1
2

:

By a result of [Carleson 1962], see [Stein 1993, II.2.2, Theorem 2 and II.2.4, (24)], the penultimate term
is dominated by

khkL2kd�k
1
2

C � CkhkL2k�gkBMO;

and by orthogonality the last term is dominated by kukH�1 .
For s � 0, we use the frequency support of .ak.D/�g/. Q k.D/u/ to bound 1X

kD0

2�k.ak.D/�g/. Q k.D/u/

H s

�

1X
kD0

2k.s�1/k.ak.D/�g/. Q k.D/u/kL2

� C

1X
kD0

2k.s�1/k�gkBMOk Q k.D/ukL2

� C

1X
kD0

2�kk�gkBMOk Q k.D/ukH s

� Ck�gkBMOkukH s : �
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Reduction to a first-order equation. Write .@2tCP
2/uDFCG;whereGD .P 2C�g/u. By Lemma 2.4,

kGkL1t .Œ0;1�IH s�1.Rd // � CkukL1t .Œ0;1�IH s.Rd //:

If v solves .@2t CP
2/vDG with Cauchy data set to 0, then by the Duhamel formula and energy estimates

we can deduce
kvkLqt L

r
x
CkvkL1t H

s
x
Ck@tvkL1t H

s�1
x
� CkukL1t H

s
x
;

provided that we prove homogeneous Strichartz estimates for @2t CP
2. By splitting uD vC .u� v/, the

Strichartz estimates of Theorem 2.3 can thus be reduced to the same estimates with ��g replaced by P 2,
that is, by proving that the following holds on Œ0; 1��Rd, provided u 2 C 0H s \C 1H s�1:

kukLqt L
r
x
� C

�
kukL1t H

s
x
Ck@tukL1t H

s�1
x
Ck.@2t CP

2/uk
L
Qq0

t L
Qr0
x

�
: (2-13)

We replace u.t; � / by hDi�su.t; � /, where hDi D .1��/
1
2 , and note that

.@2t CP
2/hDi�suD ŒP 2; hDi�s�uChDi�s.@2t CP

2/u:

The S1; 1
2

calculus shows that ŒP 2; hDi�s� 2 S1�s
1; 1
2

, where we also use that @xp.x; �/ 2 S1
1; 1
2

. Conse-
quently, using Duhamel’s principle as above we see that (2-13) is equivalent to showing that, for u 2
C 0L2\C 1H�1, we have

khDi�sukLqt L
r
x
� C

�
kukL1t L

2
x
Ck@tukL1t H

�1
x
CkhDi�s.@2t CP

2/uk
L
Qq0

t L
Qr0
x

�
:

By (2-9), with �D 1CC1 we have

h.P C�/f; f i � kf k2
L2

D) k.P C�/f kL2 � kf kL2 when f 2H 1:

By elliptic estimates we have k.P C�/f kL2.Rd / � kf kH1.Rd /; consequently .P C�/�1 exists as a
map from L2.Rd /!H 1.Rd /. One can show that .P C�/�1 2Op.S�1

1; 1
2

/, for example by [Bony 1997].
Note that since .P C�/2�P 2 2Op.S1

1; 1
2

/, the estimate remains unchanged if we replace P by P C�.
We will therefore assume P is invertible, with P�1 2 Op.S�1

1; 1
2

/.
The remainder of this paper is devoted to constructing the exact evolution group E.t/D exp.�i tP / for

the self-adjoint operator P, and proving dispersive estimates for its kernel. The group E.t/ will satisfy
following properties:

� E.t/ is a strongly continuous 1-parameter unitary group on L2.Rd /.

� E.t/ is strongly continuous with respect to t on H s.Rd / for all s 2 R.

� @tE.t/ is strongly continuous with respect to t from H s.Rd / into H s�1.Rd / for all s 2 R.

� E.0/f D f , and @tE.t/f D�iPE.t/f D�iE.t/Pf if f 2H s.Rd / for some s 2 R.

The second and third conditions imply that E.t/f 2 C 0.H s/\C 1.H s�1/ if f 2H s.Rd /. For s < 0
we understand this to mean that E.t/ extends continuously to such an operator from L2.Rd /. It follows
from the third and fourth conditions that E.t/f 2 C j .H s�j / for all s 2 R and all j 2 N. We now let

C.t/D 1
2
.E.t/CE.�t //; S.t/D 1

2
.E.t/�E.�t //P�1:
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The solution u to the Cauchy problem with Sobolev data

.@2t CP
2/uD F; u.0/D f; @tu.0/D g;

is then given by

u.t/D C.t/f CS.t/gC

Z t

0

S.t � s/F.s/ ds:

The Strichartz estimates in Theorem 2.3 are thus reduced to showing that, for s; q; Qq; r; Qr as in the statement
of Theorem 1.1,

khDi�sE.t/f kLqt L
r
x.Œ0;1��Rd / � Ckf kL2.Rd /;hDi�sZ t

0

E.t � s/F.s; � /


L
q
t L
r
x.Œ0;1��Rd /

� CkhDi1�sF k
L
Qq0

t L
Qr0
x .Œ0;1��Rd /

:
(2-14)

Here we have used that hDi1�sP�1hDis is bounded onLQr
0

.Rd / since it is a Calderón–Zygmund operator.
Similar steps apply to the square function estimate. For that estimate it will be more convenient to

work with smooth cutoffs of the solution. We fix � 2 C1c
��
�
1
2
; 1
2

��
with �.t/D 1 if jt j � 1

3
. By energy

conservation, the square function estimates of Theorem 2.3 are then reduced to showing

k�.t/hDi�sdE.t/f k
L
qd
x L2t .R

d�Œ0;1�/
� Ckf kL2.Rd /: (2-15)

3. Regularity of the geodesic and Hamiltonian flows

In this section we establish estimates for derivatives of all orders on the geodesic and Hamiltonian flows of
the metrics gk , as well as for spatial dilates gk." � / for "�1. To operate in a general context we will consider
a family of metrics gM on Rd that satisfy derivative estimates depending on the parameter M 2 Œ1;1/.

For a sufficiently small constant cd to be chosen depending only on the dimension d , we will assume
a smallness condition,

kRijklkL1 Ck.gM /ij � ıij kLipCkr
2
x.gM /ij kBMO � cd : (3-1)

Here, Rijkl is the Riemann curvature tensor of gM . This tensor, as well as the Christoffel symbols �nij ,
depends on M, but to simplify notation we suppress the subscript M.

We additionally assume that, for constants Cˇ independent of M,

k@ˇxgijMkL1 � Cˇ M
jˇ j�1; jˇj � 1; (3-2)

k@ˇxRijklkL1 � Cˇ M
jˇ j; jˇj � 0: (3-3)

Let .t; y; w/ be the geodesic for gM with initial conditions .y; w/:

@2t 
n
D

X
ij

�nij ./ P
i
Pj ; .0; y; w/D y; P.0; y;w/D w;

where P � @t . Note that by (3-1)–(3-2) we have

k�nij kL1 . cd ; k@ˇx�
n
ij kL1 � Cˇ M

jˇ j; jˇj � 1; (3-4)

where in this section a . b means that a � Cb, where C depends only on the dimension d .
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Theorem 3.1. Suppose that gM satisfies (3-1)–(3-3) for a suitably small constant cd . Then there are
constants C˛;ˇ , depending only on the constants Cˇ in (3-2)–(3-3), so that over the set 1

2
� jwj � 2 and

jt j � 1,

j@y � IjC j@y P jC j@w P � Ij. cd ; j@w � t Ij. cd jt j; (3-5)

and

j@ˇy @
˛
w.t; y; w/jC j@

ˇ
y @
˛
w P.t; y; w/j � C˛;ˇ M

j˛jCjˇ j�1; j˛jC jˇj � 1:

Additionally,

j@ˇy @
˛
w.t; y; w/j � C˛;ˇ jt jM

j˛jCjˇ j�1 if j˛j � 1 or jˇj � 2:

Proof. We produce a (not necessarily orthonormal) frame fVmgdmD1 along .t; y; w/ by parallel translation
of the standard frame f@mgdmD1. We label the resulting vector fields Vm.t; y; w/ D

P
n v

n
m.t; y; w/@n.

The dual frame fV ngdnD1 under gM is obtained by parallel translating
P
m gnmM .y/@m along  , so

vn;l.t; y; w/D
P
m gnmM .y/vlm.t; y; w/, and derivative estimates for the functions vn;l will follow directly

from those for vlm. We have

@tv
n
m D��

n
ij ./ P

ivjm; vnm.0; t; w/D ı
n
m: (3-6)

We expand the variation of the flow in the initial parameters using the frame

@yk D
X
m

f mk .t; y; w/Vm D
X
mj

f mk .t; y; w/v
j
m.t; y; w/@j ;

@wk D
X
m

hmk .t; y; w/Vm D
X
mj

hmk .t; y; w/v
j
m.t; y; w/@j :

(3-7)

By (3-6) we then have

@yk P
n
D @t@yk

n
D

X
m

.@tf
m
k /v

n
m�

X
ij

�nij ./ P
if mk v

j
m;

@wk P
n
D @t@wk

n
D

X
m

.@th
m
k /v

n
m�

X
ij

�nij ./ P
ihmk v

j
m:

(3-8)

Since D2t @yk D
P
m.@

2
t f

m
k
/ Vm, with Dt covariant differentiation in t , the Jacobi variation formula

yields

@2t f
m
k D

X
n

�X
ijlp

Rijlp./ P
ivjn P

lvm;p
�
f nk ; (3-9)

with the following initial conditions, where the second holds by (3-8):

f mk .0; y; w/D ı
m
k ; @tf

m
k .0; y; w/D

X
i

�mik.y/w
i :

Equation (3-9) holds with f replaced by h, with initial conditions

hmk .0; y; w/D 0; @th
m
k .0; y; w/D ı

m
k :
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The bounds j P j. 1 and jvj. 1, together with (3-4), yield for jt j � 1,

jvnj � ı
n
j jC jf

m
k � ı

m
k jC j@tf

m
k jC j@th

m
k � ı

m
k j . cd ; jh

m
k � tı

m
k j. cd jt j:

Together with (3-4) and (3-7)–(3-8), these yield the bound (3-5).
Assume we have shown the following for j˛jC jˇj �N � 1, where N � 1:

j@ˇy @
˛
w.v

n
j ; f

m
k ; h

m
k /jC j@

ˇ
y @
˛
w.@tf

m
k ; @th

m
k /j � C˛;ˇ M

j˛jCjˇ j: (3-10)

Using (3-7), (3-4), and (3-8), we conclude that if 1� j˛jC jˇj �N,

j@ˇy @
˛
w

n
jC j@ˇy @

˛
w P

n
j � C˛;ˇ M

j˛jCjˇ j�1:

By (3-6) and the Leibniz rule, for j˛jC jˇj DN we then can write

@t@
ˇ
y @
˛
wv

n
m D��

n
ij ./ P

i@ˇy @
˛
wv

j
mCO.M j˛jCjˇ j/:

Similarly, by (3-9), for j˛jC jˇj DN we have

@2t @
ˇ
y @
˛
wf

m
k D

X
n

�X
ijlp

Rijlp./ P
ivjn P

lvm;p
�
@ˇy @

˛
wf

n
k CO.M j˛jCjˇ j/

and the same for f replaced by h. By the initial conditions, we have

@ˇy @
˛
w.v

m
n ; f

m
k ; h

m
k ; @th

m
k /
ˇ̌
tD0
D 0; j@t@

ˇ
y @
˛
wf

m
k .0; y; w/j � C˛;ˇ M

j˛jCjˇ j:

An application of Gronwall’s lemma then yields, for j˛jC jˇj DN,

j@ˇy @
˛
w.v

m
n ; f

m
k ; h

m
k /jC j@

ˇ
y @
˛
w.@tf

m
k ; @th

m
k /j � C˛;ˇ M

j˛jCjˇ j;

and (3-10) follows for j˛jC jˇj DN by (3-7) and (3-8), and hence all ˛; ˇ by induction. As above, this
implies the desired bounds for @ˇy @˛w.; P/.

The last estimate of the theorem follows from the bound on j@t@
ˇ
y @
˛
w j, since @ˇy @˛w.0; y;w/D 0 if

either j˛j � 1 or jˇj � 2. �

We now consider the related Hamiltonian flow. Let

pM .x; �/D

�X
ij

gijM .x/�i�j

�1
2

;

and consider the solution .x.t; y; �/; �.t; y; �// to Hamilton’s equations

Px D .r�pM /.x; �/; P� D�.rxpM /.x; �/; x.0; y; �/D y; �.0; y; �/D �:

These are related to the geodesic flow by

xi .t; y; �/D  i .t; y; w.y; �//;

�j .t; y; �/D pM .y; �/
X
j

gM;ij ./ Pj .t; y; w.y; �//;
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where

wi .y; �/D
1

pM .y; �/

X
j

gijM .y/ �j :

It follows from (3-1) that

j@ywjC
ˇ̌
w� j�j�1�

ˇ̌
C
ˇ̌
@�w� .I� j�j�2�˝ �/

ˇ̌
. cd ;

and from (3-2) and homogeneity that

j@ˇy @
˛
�w.y; �/j � C˛;ˇ M

jˇ j�1
j�j�j˛j:

Observe that I� j�j�2�˝ � is equal to …?� , the projection onto the plane perpendicular to �. We use this
to deduce the following corollary of Theorem 3.1.

Corollary 3.2. Suppose that gM satisfies (3-1)–(3-3) for a suitably small constant cd . Then there are
constants C˛;ˇ , depending only on the constants Cˇ in (3-2)–(3-3), so that for jt j � 1

j@yx� IjC j@�� � Ij. cd ; j@y�jC j� � �j. cd j�j; j@�x� t …?� j. cd jt j;

and when j˛jC jˇjCm� 1,

j�jj@˛�@
ˇ
y @
m
t x.t; y; �/jC j@

˛
�@
ˇ
y @
m
t �.t; y; �/j � C˛;ˇ M

j˛jCjˇ jCm�1
j�j1�j˛j:

Additionally,

j@ˇy @
˛
�x.t; y; �/j � C˛;ˇ jt jM

j˛jCjˇ j�1
j�j�j˛j; j˛j � 1 or jˇj � 2:

Proof. The estimates other than those involving derivatives in t follow from Theorem 3.1. Estimates on
derivatives in t follow by induction using Hamilton’s equations and the following consequence of (3-2):

j@ˇx@
˛
� .r�pM /jC j�j

�1
j@ˇx@

˛
� .rxpM /j � C˛;ˇ M

jˇ j
j�j�j˛j: �

For the generating function 'k.t; x; �/, we need to consider the function y.t; x; �/ that is the inverse
of the map y! x.t; y; �/.

Theorem 3.3. Suppose that gM satisfies (3-1)–(3-3) for a suitably small constant cd . Then there are
constants C˛;ˇ , depending only on the constants Cˇ in (3-2)–(3-3), so that if jt j � 1 and �¤ 0, the map
y! x.t; y; �/ is invertible. The inverse map y.t; x; �/ satisfies j@xy � Ij. cd , and

j@ˇx@
˛
�y.t; x; �/j � C˛;ˇ M

j˛jCjˇ j�1
j�j�j˛j; j˛jC jˇj � 1:

Additionally,

j@ˇx@
˛
�y.t; x; �/j � C˛;ˇ jt jM

j˛jCjˇ j�1
j�j�j˛j; j˛j � 1 or jˇj � 2:

Also, for the function �.t; x; �/ WD �.t; y.t; x; �/; �/,

j@ˇx@
˛
��.t; x; �/j � C˛;ˇ M

j˛jCjˇ j�1
j�j1�j˛j; j˛jC jˇj � 1:
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Proof. We have jx.t; y; �/�yj. jt j, so for each �¤ 0 and jt j � 1 the map y! x is proper and hence
a closed mapping. Since j@yx � Ij . cd , it is an open mapping, and hence onto and one-to-one by
connectivity and simple connectivity of Rd. Thus y! x.t; y; �/ is a diffeomorphism of Rd, with inverse
satisfying j@xy � Ij. cd . The estimates of the theorem are then a consequence of the inverse function
theorem and Corollary 3.2. �

4. Estimates for solutions of the eikonal equation

In this section we establish estimates on derivatives of the solution to the eikonal equation for gk . For
simplicity we consider 0 � t � 1. Let gk be the mollification of g at spatial scale 2�

k
2 from Section 2,

and let 'k be the solution to the eikonal equation

@t'k.t; x; �/D�pk.x;rx'k.t; x; �//; 'k.0; x; �/D hx; �i:

Then 'k.t; x; �/ D
P
i �iyi .t; x; �/, where y.t; x; �/ is as in Theorem 3.3, and the estimates of that

theorem hold with M D 2
k
2 . Furthermore,

@�j 'k.t; x; �/D yj .t; x; �/; @xj 'k.t; x; �/D �j .t; x; �/:

These identities follow from the fact that � � dy D � � dx for the homogeneous symplectic transformation
.y; �/! .x; �/ at fixed t .

We then easily read off the following from Theorem 3.3:

j@ˇx'k.t; x; �/j � Cˇ 2
k
2
.jˇ j�2/

j�j; jˇj � 2; (4-1)

j@ˇx@�'k.t; x; �/j � Cˇ t 2
k
2
.jˇ j�1/; jˇj � 2; (4-2)

j@ˇx@
˛
�'k.t; x; �/j � C˛;ˇ t 2

k
2
.j˛jCjˇ j�2/

j�j1�j˛j; j˛j � 2: (4-3)

Additionally,
j@x@�'k.t; x; �/j � C: (4-4)

The following shows that some estimates can be improved for derivatives in �, which is key to controlling
the evolution operators for small t .

Theorem 4.1. Assume that j˛j � 2 or jˇj � 2. Then when 2�k � t � 1,

jh�; @�i
j @ˇx@

˛
�'k.t; x; �/j � Cj;˛;ˇ .t

1
2 2

k
2 /j˛j2

k
2
.jˇ j�2/

j�j1�j˛j;

and when 0� t � 2�k ,

jh�; @�i
j @ˇx@

˛
�'k.t; x; �/j � Cj;˛;ˇ 2

k
2
.jˇ j�2/

j�j1�j˛j:

Proof. By homogeneity it suffices to consider the case j D 0. If j˛j � 1, the estimates for all 0� t � 1
follow from (4-1)–(4-2). To handle j˛j� 2, we take a parameter " with 2�

k
2 � "� 1. Let g";k.x/D gk."x/,

where gk is the localization of g to frequency 2
k
2 . Similarly, let p";k.x; �/D pk."x; �/. Let '";k be the

solution to
@t'";k.t; x; �/D�p";k.x;rx'";k.t; x; �//; '";k.0; x; �/D hx; �i:
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Then by homogeneity we have

'k.t; x; �/D "'";k."
�1t; "�1x; �/: (4-5)

The metric g";k.x/ is a mollification of g."x/ at scale "�12�
k
2 � 1. Since g."x/ is Lipschitz with bounded

curvature, uniformly over " 2 Œ0; 1�, we can apply estimates (4-1)–(4-3) with 2
k
2 replaced by M D "2

k
2 .

For 2�
k
2 � t � 1 we take "D t in (4-5), and apply (4-3) with M D t2�

k
2 to get

j@ˇx@
˛
�'k.t; x; �/j � C˛;ˇ t

j˛j�1 2
k
2
.j˛jCjˇ j�2/

j�j1�j˛j:

For j˛j � 2 this implies the desired estimate.
For 0� t � 2�

k
2 we take "D 2�

k
2 in (4-5), and apply (4-3) with 2

k
2 replaced by 1 to get

j@ˇx@
˛
�'k.t; x; �/j � C˛;ˇ t 2

k
2
jˇ j
j�j1�j˛j:

Since t � t
j˛j
2 2

k
2
.j˛j�2/ for t � 2�k and j˛j � 2, and t2

k
2
jˇ j
� 2

k
2
.jˇ j�2/ for 0� t � 2�k, this concludes

the theorem for 0� t � 2�
k
2 . �

As a corollary we obtain the estimates we need for linearizing the phase function, and showing the
symbols are slowly varying, for � in an appropriate conical region. Given a unit vector �, and 2�k � t � 1,
we define the dyadic/conic region

��k;t D
˚
� W 2

3
2k�1 � j�j � 3

2
2kC2; j� � j�j�1�j � 1

16
t�

1
2 2�

k
2

	
: (4-6)

Note that on this region, since t�
1
2 2�

k
2 � 1,

j�j � h�; �i � 3
4
j�j; j…�?�j � t

� 1
2 2

k
2 ;

where …�? is projection onto the hyperplane perpendicular to �.

Corollary 4.2. The following estimates hold if � 2��
k;t

and 2�k � t � 1:

jh�; @�i
j @˛�@

ˇ
x .@

2
�'k/.t; x; �/j � Cj;˛;ˇ t2

�k 2�kj .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j; (4-7)

jh�; @�i
j @˛�@

ˇ
x .@�@x'k/.t; x; �/jC 2

�k
jh�; @�i

j @˛�@
ˇ
x .@

2
x'k/.t; x; �/j

� Cj;˛;ˇ 2
�kj .t

1
2 2�

k
2 /j˛j 2

k
2
jˇ j; (4-8)

and

jh�; @�i
j @˛�@

ˇ
x .'k.t; x; �/� � � r�'k.t; x; �//j � Cj;˛;ˇ 2

�kj .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j: (4-9)

For 0� t � 2�k these hold for � in the dyadic shell 2
3
2k�1 � j�j � 3

2
2kC2 if t is replaced by 2�k on the

right-hand side.

Proof. We consider the estimate (4-7). Theorem 4.1 gives

jh�; @�i
j @˛�@

ˇ
x .@

2
�'k/.t; x; �/j � Cj;˛;ˇ t2

�k .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j:
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After rotation we may assume that � D .1; 0; : : : ; 0/. We proceed by induction in j , the case j D 0 being
the same as above. Suppose then that (4-7) holds for j < j0. We expand

h�; @�i
j0 D �

j0
1 @

j0
�1
C

X
jCj˛j�j0
j<j0

cj0;j;˛ �
j
1�
0˛@j�1@

˛
�0

Since �1 � 3
2
2kC2 and j�0j � t�

1
2 2

k
2 on ��

k;t
, the induction hypothesis yields

j�
j0
1 @

j0
�1
@˛�@

ˇ
x .@

2
�'k/.t; x; �/j � Cj;˛;ˇ t2

�k .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j;

which establishes (4-7) for j D j0, since �1 � 2k�2 on ��
k;t

. Similar steps establish (4-8).
The estimate (4-9) follows from (4-7) if j˛j � 2, so it suffices to consider j˛j � 1. The proof for jˇj ¤ 0

will follow from the proof for ˇ D 0 with 'k replaced by @ˇx'k , so we assume ˇ D 0. We then rotate to
assume that � D e1, in which case by homogeneity the estimate becomesˇ̌

@j�1@
˛
�0

�
'k.t; x; �1; �

0/�'k.t; x; �1; 0/� �
0
� r�0'k.t; x; �1; 0/

�ˇ̌
� Cj;˛ 2

�kj .t
1
2 2�

k
2 /j˛j:

This estimate follows from a Taylor expansion argument together with (4-7), since j�0j � t�
1
2 2

k
2 on �e1

k;t
.

For 0� t � 2�k the desired estimates follow easily from Theorem 4.1. �

We also record estimates for time derivatives of 'k , which will be used in establishing space-time
energy estimates.

Corollary 4.3. Assume that 2�k � t � 1. If j˛j � 1, then

jh�; @�i
j @˛�@t'k.t; x; �/j � Cj;˛.t

1
2 2

k
2 /j˛j�1j�j1�j˛j;

and if mCjˇj � 2,

jh�; @�i
j @ˇx@

˛
�@
m
t 'k.t; x; �/j � Cj;m;˛;ˇ .t

1
2 2

k
2 /j˛j2

k
2
.mCjˇ j�2/

j�j1�j˛j:

If 0� t � 2�k, both of these estimates hold with t replaced by 2�k on the right-hand side.

Proof. By homogeneity we may assume j D 0. The estimates that involve no derivatives in t , that is, the
second estimate with mD 0, hold by Theorem 4.1. We assume both estimates hold for derivatives up to
order m � 0 in t , and prove they hold for derivatives of order mC 1 in t . Write @t'k D pk.x;rx'k/,
and observe that @ˇx@˛�@

mC1
t 'k can be written as a sum of terms of the form

.@ˇ0x @


�
pk/.x;rx'k/.@

ˇ1
x @

˛1
� @

m1
t rx'k/ � � � .@

ˇjj
x @

˛jj
� @

mjj
t rx'k/;

where
Pj j
jD0 ǰ D ˇ,

Pj j
jD1 j̨ D ˛,

Pj j
jD1mj Dm. If jˇj DmD 0, we must have j j̨ j � 1 for all j ,

and the first estimate of the corollary is a result of the following bounds from (2-7) and Theorem 4.1:

j.@


�
pk/.x;rx'k/j � C j�j

1�j j;

j@ j̨

� rx'kj � C j̨
.t
1
2 2

k
2 /j j̨ j�1j�j1�j j̨ j:
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Assume that jˇjCm� 1. If jˇ0j � 1, then the second estimate of the corollary is a result of the following
bounds from (2-7) and the induction assumption:

j.@ˇ0x @


�
pk/.x;rx'k/j � C;ˇ0 2

k
2
.jˇ0j�1/j�j1�j j;

j@ ǰ

x @
j̨

� @
mj
t rx'kj � C j̨ ; ǰ ;mj 2

k
2
.j ǰ jCmj /.t

1
2 2

k
2 /j j̨ jj�j1�j j̨ j:

Finally, if jˇ0j D 0 then we may assume jˇ1jCm1 � 1, and use the bounds

j.@


�
pk/.x;rx'k/j � C j�j

1�j j;

j@ˇ1x @
˛1
� @

m1
t rx'kj � C˛1;ˇ1;m1 2

k
2
.jˇ1jCm1�1/.t

1
2 2

k
2 /j˛1jj�j1�j˛1j;

j@ ǰ

x @
j̨

� @
mj
t rx'kj � C j̨ ; ǰ ;mj 2

k
2
.j ǰ jCmj /.t

1
2 2

k
2 /j j̨ jj�j1�j j̨ j: �

5. Parametrix for the dyadically localized equation

In this section, we use the eikonal solution 'k to produce an approximation to the wave group for P with
data at frequency scale 2k. In the next section we will use these approximations to produce the exact
evolution group for P by iteration. For k � 2 we define

zPk D
1

2

kC1X
jDk�1

ǰ .D/
�
pj .x;D/Cpj .x;D/

�
�
ǰ .D/:

Let Qpk.x; �/ denote the symbol of zPk . Recalling that ˇ2j D  j ,

Qpk.x; �/D

kC1X
jDk�1

pj .x; �/ j .�/C

kC1X
jDk�1

qj .x; �/ ǰ .�/; (5-1)

where qj 2 S0
1; 1
2

, uniformly over j . For j�j 2
�
3
4
2k; 4

3
2kC1

�
we define

bk.t; x; �/D e
�i'k.t;x;�/.@t C i zPk/e

i'k.t;x;�/;

where zPk acts on x.
We then define Wk.t/ for k � 2 by

.Wk.t/f /.x/D
1

.2�/d

Z
ei'k.t;x;�/  k.�/ Of .�/ d�: (5-2)

It follows that .@t C i zPk/Wk.t/D Bk.t/, where

.Bk.t/f /.x/D
1

.2�/d

Z
ei'k.t;x;�/ bk.t; x; �/ k.�/ Of .�/ d�: (5-3)

Theorem 5.1. For jt j � 1 the symbol bk.t; x; �/ satisfies

jh�; @�i
j @˛�@

ˇ
x@
m
t bk.t; x; �/j � Cj;˛;ˇ;m

(
.t
1
2 2�

k
2 /j˛j 2

k
2
.jˇ jCm/; jt j � 2�k;

2�kj˛j 2
k
2
.jˇ jCm/; jt j � 2�k :
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Proof. The symbol bk.t; x; �/ is given by the oscillatory integral

i@t'k.t; x; �/C
i

.2�/n

Z
eihx�y;�iCi'k.t;y;�/�i'k.t;x;�/ Qpk.x; �/ dy d�; (5-4)

where recall that we assume j�j 2
�
3
4
2k; 4

3
2kC1

�
. We write

'k.t; y; �/�'k.t; x; �/D .y � x/ �V.t; x; y � x; �/;

where

V.t; x; h; �/D

Z 1

0

.rx'k/.t; xC sh; �/ ds:

Then

V.t; x; 0; �/Drx'k.t; x; �/; @hiVj .t; x; 0; �/D
1
2
@xi@xj 'k.t; x; �/:

We note jV.t; x; h; �/� �j � 1
8
j�j by (3-1), and for j˛jC jˇjCmCj j � 1 Corollary 4.3 yields

j@˛�@
ˇ
x@
m
t @


h
V.t; x; h; �/j � C˛;ˇ;m;2

k
2
.j˛jCjˇ jCmCj j�1/

j�j1�j˛j: (5-5)

We make the change of variables y! yCh, followed by �! V.t; x; h; �/C �, to write the integral term
in (5-4) as Z

e�ihh;�i Qpk.x; V .t; x; h; �/C �/ dh d�: (5-6)

We then decompose (5-6) using a smooth cutoff �, supported in j�j � 2, with �.�/ D 1 for j�j � 1.
Specifically, we write

1D �.2�kC4�/.1��.h//C .1��.2�kC4�//C�.h/�.2�kC4�/:

Since Qpk 2 S11; 1
2

, the estimates (5-5) imply that if j�j 2
�
3
4
2k; 4

3
2kC1

�
,

j@�� @
˛
�@
ˇ
x@
m
t @


h
Qpk.x; V .t; x; h; �/C �/�.2

�kC4�/j

� C˛;ˇ;m;;�

�
2k.1�j˛j�j� j/ 2

k
2
.j˛jCjˇ jCmCj j�1/; j˛jC jˇjCmCj j � 1;

2k.1�j� j/; j˛jC jˇjCmCj j D 0:
(5-7)

Consider first the term r1.t; x; �/, defined byZ
e�ihh;�i Qpk.x; V .t; x; h; �/C �/ �.2

�kC4�/.1��.h// dh d�

D

Z
e�ihh;�i�N�

�
Qpk.x; V .t; x; h; �/C �/ �.2

�kC4�/
�
� .1��.h//jhj�2N dh d�:

The estimates (5-7) show that the integrand is bounded by 2k.1�2N/jhj�2N, and it is supported where
j�j � 2k�3 and jhj> 1. Similar estimates on its derivatives in .x; �/ yield that, for all N,

j@˛�@
ˇ
x@
m
t r1.t; x; �/j � CN;˛;ˇ;m 2

�kN; j�j 2
�
3
4
2k; 4

3
2kC1

�
: (5-8)
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Next consider the term r2.t; x; �/, defined by the integralZ
e�ihh;�i Qpk.x; V .t; x; h; �/C �/.1��.2

�kC4�// dh d�

D

Z
e�ihh;�i.1��� /

n�Nh
�
Qpk.x; V .t; x; h; �/C �/.1��.2

�kC4�//j�j�2N
�
.1Cjhj2/�n dh d�:

The estimates (5-7) show that the integrand is bounded by a constant times 2k.NC
1
2
/
j�j�2N .1Cjh2j/�n,

and it is supported where j�j � 2k�4. It follows that r2.t; x; �/ also satisfies the estimates (5-8).
Thus, up to rapidly decreasing terms, the symbol bk.t; x; �/ is equal to

i@t'k.t; x; �/C
i

.2�/d

Z
e�ihh;�i Qpk.x; V .t; x; h; �/C �/ �.2

�kC4�/ �.h/ dh d�:

We take a Taylor expansion in � of Qpk about � D 0 to write the integral asX
j j<2N

1

Š

Z
e�ihh;�iD



h

�
.@


�
Qpk/.x; V .t; x; h; �//�.h/

�
�.2�kC4�/ dh d�C r.t; x; �/;

where r.t; x; �/ is given byX
j jD2N

Z 1

0

.1� s/N�1
Z
e�ihh;�iD



h

�
.@


�
Qpk/.x; V .t; x; h; �/C s�/�.h/

�
�.2�kC4�/ dh d� ds:

The estimates (5-7) show that j@ˇx@˛�r.t; x; �/j � CN;˛;ˇ 2
k.dC1� 1

2
j˛jC 1

2
jˇ j�N/, provided that j�j 2�

3
4
2k; 4

3
2kC1

�
.

To handle the terms with j j< 2N, let �.h/D 2�4d O�.2�4h/, which has integral .2�/n and vanishing
moments of all nonzero order, and write the  term in the sum asZ

e�ihh;�iD


h

�
.@


�
Qpk/.x; V .t; x; h; �// �.h/

�
2nk�.2kh/ dh d�:

We Taylor expand Qpk.x; V .t; x; h; �//�.h/ to order N about hD 0. The N -th order remainder term will
lead to a term bounded by 2k.1�

1
2
j j�N/, with similar estimates on derivatives in .x; �/. All terms with h�

with �¤0 integrate to 0 by the moment condition. Therefore, since @t'k.t; x; �/D�pk.x;rx'k.t; x; �//,
we can write bk.t; x; �/ as r.t; x; �/ plus

i

�
�pk.x;rx'k.t; x; �//C

X
j j<2N

1

Š
D


h
.@


�
Qpk/.x; V .t; x; h; �//

ˇ̌
hD0

�
: (5-9)

If j�j 2
�
3
4
2k; 4

3
2kC1

�
then . k�1C kC kC1/.rx'k.t; x; �//D 1, so by (5-1) the  D 0 term combines

with �pk.t; x;rx'k.t; x; �// to give
kC1X
jDk�1

.pk �pj /.x;rx'k.t; x; �//  j .rx'k.t; x; �//

C

kC1X
jDk�1

qj .x;rx'k.t; x; �// ǰ .rx'k.t; x; �//: (5-10)
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We will estimate this term similarly to the term j j D 1, using the following estimate, which is a
consequence of (2-5):

j@ˇx@
˛
� .pk �pj /.x; �/j � C˛;ˇ 2

k. 1
2
jˇ j�1/

j�j1�j˛j: (5-11)

The same estimates hold for the term qj .x; �/ 2 S
0

1; 1
2

when j�j � 2k.
We now examine the terms in the sum when j j � 1. Observe that

@�hV.t; x; h; �/
ˇ̌
hD0
D

1

1Cj� j
@�xrx'k.t; x; �/:

The  term in (5-9) is then a finite linear combination of terms of the form

.@
C�

�
Qpk/.x;rx'k.t; x; �//.@

�1
x rx'k.t; x; �// � � � .@

�l
x rx'k.t; x; �//;

where �1C � � �C �l D  , each �i ¤ 0, and l D j� j � 1.
By Corollary 4.3, when �i ¤ 0, j�j 2

�
3
4
2k; 4

3
2kC1

�
, and 2�k � t � 1,

jh�; @�i
j @˛�@

ˇ
x@
m
t .@

�i
x rx'k.t; x; �//j � Cj;˛;ˇ;m;� 2

k
2
.j�i jC1/ .t

1
2 2�

k
2 /j˛j 2

k
2
.jˇ jCm/:

A recursion argument and (2-7) then show that, for 2�k � t � 1,

jh�; @�i
j @˛�@

ˇ
x@
m
t ..@

C�

�
Qpk/.x;rx'k/@

�1
x rx'k � � � @

�l
x rx'k/j

� Cj;˛;ˇ;m;;� 2
k
2
.2�j j�j� j/ .t

1
2 2�

k
2 /j˛j 2

k
2
.jˇ jCm/:

The expression for bk.t; x; �/ involves an asymptotic sum over j j � 1, where also j� j � 1 in all terms, and
the sum thus satisfies the statement of the theorem in the case 2�k � t � 1. The estimate for 0� t � 2�k

follows similarly.
It remains to consider the term (5-10). Using (5-11) and a similar recursion argument, we obtain for

the case 2�k � t � 1,ˇ̌̌̌
h�; @�i

j @˛�@
ˇ
x@
m
t

� kC1X
iDk�1

.pk �pi /.x;rx'k.t; x; �// i .rx'k.t; x; �//

�ˇ̌̌̌
� Cj;˛;ˇ;m .t

1
2 2�

k
2 /j˛j 2

k
2
.jˇ jCm/;

and the proof for 0� t � 2�k is similar. �

Repeating the proof of Corollary 4.2, we obtain the following.

Corollary 5.2. The following estimates hold for � 2��
k;t

:

jh�; @�i
j @˛�@

ˇ
x@
m
t bk.t; x; �/j � Cj;˛;ˇ;m 2

�kj .t
1
2 2�

k
2 /j˛j 2

k
2
.jˇ jCm/:

For 0� t � 2�k these hold for � in the dyadic shell 2
3
2k�1 � j�j � 3

2
2kC2 if t is replaced by 2�k on the

right-hand side.
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6. Energy flow estimates

In this section we construct the exact wave group exp.�i tP / via a convergent iteration based on the
approximate wave group

W.t/D

1X
kD2

Wk.t/C 0.D/C 1.D/: (6-1)

Recall from (5-2)–(5-3) that .@t C i zPk/Wk.t/D Bk.t/ is of order 0. To show that .@t C iP /W.t/ is of
order 0 we will show that, for jt j � 1, Wk.t/f remains localized in frequency to an appropriate dyadic
shell at scale 2k, modulo smoothing errors. This will yield

.@t C iP /W.t/D

1X
kD2

Bk.t/CR.t/;

with R.t/ a smoothing error. Denoting the right-hand side by B.t/, since W.0/D I the wave group can be
obtained by convergent iteration of W.t/ and B.t/, using Sobolev mapping bounds for both. Dispersive
estimates will then depend on showing that composite terms

W.t � s1/B.s1� s2/ � � �B.sn�1� sn/B.sn/; t � s1 � � � � � sn � 0;

have similar microlocal mapping properties to W.t/ and B.t/. For a fixed n we could show that this
term has an oscillatory integral representation similar to that for B.t/, but at frequency scale 2k we will
need to consider n up to n � 2k� for some � > 0. To prove preservation of dyadic localization of the
energy we then need to microlocalize the energy mapping of each term Bk.s/ to within 2k.1��/ of the
Hamiltonian flow. For convenience we fix � D 1

4
, though any � 2

�
0; 1
2

�
would work. We then consider

frequency cutoffs with symbols a.�/ 2 S03
4

, that is,

j@˛�a.�/j � C˛ 2
� 3
4
kj˛j; supp.a/�

˚
� W 4

5
2k�1 < j�j< 5

4
2kC2

	
: (6-2)

Given any compact set K �
˚
� W 7

8
2k�1 < j�j< 8

7
2kC2

	
and ı > 0, there exists a cutoff a satisfying

(6-2) such that supp.a/ is contained in the ı2
3k
4 neighborhood ofK and aD 1 on the 1

2
ı2

3k
4 neighborhood

ofK, and such that the constants C˛ depend on ı but are independent ofK. Such an a.�/ can be obtained,
for example, by convolving the support function of the 3

4
ı2

3k
4 neighborhood of K with an approximation

to the identity supported in the 1
8
ı ball.

Lemma 6.1. Suppose that a1 and a2 are cutoffs satisfying (6-2), and let K be the projection onto � of
the image of Rd � supp.a1/ under the Hamiltonian flow of pk at time t . Assume that a2 D 1 on the
ı2

3k
4 neighborhood of K. Then for all N,

k.1� a2.D//Bk.t/a1.D/f kHN � CN 2
�kN
kf kH�N ;

where the constant CN depends only on N, the constants C˛ in (6-2), and ı. The same holds with Bk.t/
replaced by Wk.t/.

Proof. We prove this using a modification of the Córdoba–Fefferman wave packet transform [1978]. We
use the particular transform from [Smith 1998], which is based on a Schwartz function with Fourier
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transform of compact support, instead of a Gaussian. Fix g a radial, real Schwartz function with
kgkL2 D .2�/

d
2 and supp. Og/�

˚
j�j< 1

4

	
, and set

gx;�.z/D 2
kd
4 eih�;z�xig.2

k
2 .z� x//:

For f 2 L2.Rd / define

.Tkf /.x; �/D

Z
f .z/ gx;�.z/ dz:

Then Tk is an isometry, with adjoint given by

.T �k F /.z/D

Z
F.x; �/ gx;�.z/ dx d�:

Since j�j � 2k on the support of a1.�/, it suffices to show that for all N,

kTk hDi
N .1� a2.D//Bk.t/a1.D/T

�
k F kL2.R2d / � CN 2

�2kN
kF kL2.R2d /:

The operator on the left is given by the following integral kernel:

Kk.t; x
0; � 0I x; �/D

Z
Rd

�
Bk.t/ a1.D/ gx;�

�
.z/ hDiN .1� a2.D//gx0;�0.z/ dz:

Let .xt ; �t /D �t .x; �/, with �t the Hamiltonian flow for pk . A simple integration by parts argument,
using Lemma 6.2 below, shows that for all N,

jKk.t; x
0; � 0I x; �/j � CN 2

kN .1C 2
k
2 jx0� xt jC 2

�k
2 j� 0� �t j/

�8N�2d�1

� C 0N 2
�kN .1C 2

k
2 jx0� xt jC 2

�k
2 j� 0� �t j/

�2d�1;

(6-3)

where in deducing the second bound we used that the integrand vanishes unless j� 0� �t j � ı 2
3k
4 � 2

k
2 .

The desired L2 bound then follows by the Schur test, using the fact that .x; �/! .xt ; �t / is a volume-
preserving diffeomorphism, which is homogeneous in � and bilipschitz on the cotangent bundle (uniformly
over k). �

Lemma 6.2. Let fx;�.y/D 2
kd
4 eih�;y�xif .2

k
2 .y � x//. Assume that f is a Schwartz function and

j�j 2 Œ2k�1; 2kC2�, and let .xt ; �t /D �t .x; �/. Then

.Bk.t/fx;�/.z/D 2
kd
4 eih�t ;z�xt ih.t; 2

k
2 .z� xt //;

where for all N; j;  ,
j@
j
t @

zh.t; z/j � CN;j; 2

k
2
j .1Cjzj/�N:

For each N; j;  , the constant CN;j; is bounded by a Schwartz seminorm of f , but is uniform over k; x; � .

Proof. Up to a factor of .2�/d, the function h.t; z/ is given by the integralZ
eiˆ.t;z;�/ bk.t; xt C 2

�k
2 z; �C 2

k
2 �/ k.�C 2

k
2 �/ Of .�/ d�;

where
ˆ.t; z; �/D 'k.t; xt C 2

�k
2 z; �C 2

k
2 �/� hx; �C 2

k
2 �i � h�t ; 2

�k
2 zi:
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Since 'k is the homogeneous generating function for �t , this equals

'k.t; xt C 2
�k
2 z; �C 2

k
2 �/�'k.t; xt ; �/� 2

k
2 � � .r�'k/.t; xt ; �/� 2

�k
2 z � .rx'k/.t; xt ; �/:

By Corollary 3.2, Theorem 4.1, Corollary 4.3, and (4-4), the following estimates hold on the support of
the integrand:

j@
j
t @
ˇ
z @
˛
�ˆ.z; �/j � C˛;ˇ;j 2

k
2
j if j˛jC jˇj � 2:

As ˆ vanishes to second order at z D �D 0, on the region of integration we have

j@
j
t ˆ.z; �/j � Cj 2

k
2
j .1CjzjC j�j/2;

j@
j
t rz;�ˆ.z; �/j � Cj 2

k
2
j .1CjzjC j�j/:

By Theorem 3.3 we have jrzr�ˆ.z; �/� Ij . cd , and since jr2�ˆ.y; �/j � C , we deduce that jzj �
C.jr�ˆ.z; �/jC j�j/ and thus

1

1Cjr�ˆ.y; �/j2
� C

1Cj�j2

1Cjzj2
:

By Corollary 3.2, Theorem 5.1, and (6-2), since j�C 2
k
2 �j � 2k we haveˇ̌

@
j
t @
ˇ
z @
˛
�

�
bk.t; xt C 2

�k
2 z; �C 2

k
2 �/ k.�C 2

k
2 �/ Of .�/

�ˇ̌
� CN;˛;ˇ;j 2

k
2
j .1Cj�j/�N:

Integrating by parts with respect to the vector field

LD
1� ir�ˆ.z; �/ � r�

1Cjr�ˆ.z; �/j2

then leads to the bounds on @jt @

zh in the statement. �

The same argument also shows that the kernel of TkBk.t/T �k satisfies (6-3) with N D 0, and in
particular Bk.t/ is bounded on L2.Rd /, uniformly over k and jt j � 1. By applying Lemma 6.1 with
a1.�/D 1 on the support of ˇk.�/, and a2.�/ supported in the annulus j�j 2 Œ2k�1; 2kC2�, we then obtain
the following by an orthogonality argument.

Lemma 6.3. For all s 2 R we have
P1

kD2Bk.t/f

H s � Cskf kH s , uniformly over jt j � 1.

We can now show that W.t/ defined above is an approximate evolution operator for P.

Lemma 6.4. Let W.t/ be defined by (6-1). Then

.@t C iP /W.t/D

1X
kD2

Bk.t/CR.t/;

where R.t/ is an integral kernel operator with kernel K satisfying

j@˛x@
ˇ
yK.t; x; y/j � CN;˛;ˇ .1Cjx�yj/

�N:

In particular, kR.t/f kHN � CN kf kH�N for all N, uniformly over jt j � 1.
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Proof. We take ak.�/ supported in
˚
4
5
2k < j�j < 5

4
2kC1

	
, and equal to 1 where

˚
7
8
2k < j�j < 8

7
2kC1

	
,

satisfying (6-2) with constants C˛ independent of k. For cd small enough, the condition of Lemma 6.1
with a1 D  k and a2 D ak is satisfied for all t with jt j � 1. We need show that the operator

1X
kD2

.P � zPk/Wk.t/D

1X
kD2

.P � zPk/.1� ak.D//Wk.t/

satisfies the conditions for R.t/, since P ı . 0.D/C 1.D// does. It suffices to show we can write

.P � zPk/Wk.t/D Op.Rk/ ı k.D/;

with Rk.t; x; y/ an integral kernel satisfying, for all N,

j@˛x@
ˇ
yRk.t; x; y/j � CN;˛;ˇ 2

�kN .1Cjx�yj/�N:

Observe that Rk D T �k Op.Kk/ Tk , where Kk satisfies (6-3), and vanishes unless j�j 2
�
4
5
2k; 5

4
2kC1

�
and j� 0j …

�
7
8
2k; 8

7
2kC1

�
. For cd small this implies j�t j 2

�
5
6
2k; 6

5
2kC1

�
; hence j� 0� �t j � 2k�4. Since

jx� xt j � 2 for jt j � 1, we have for all N

jKk.t; x
0; � 0I x; �/j � CN 2

�kN .1C 2�
k
2 j� 0j/�N .1Cjx� x0j/�N:

The operator Tk is given by a kernel satisfying for all N

j@˛yTk.x; �Iy/j � CN;˛2
k. j˛j

2
Cd
4
/.1C 2

k
2 jx�yj/�N:

Since the volume of integration in � is less than Cd 2kd, the estimate for Rk.t; x; y/ follows by composi-
tion. �

We now writeZ
Rk.t; x; y/ . k.D/f /.y/ dy D

1

.2�/n

Z
ei'k.t;x;�/rk.t; x; �/  k.�/ Of .�/ d�;

with

rk.t; x; �/D e
�i'k.t;x;�/

Z
Rk.t; x; y/ e

�ihy;�i dy:

Then for all N

j@ˇx@
˛
�rk.t; x; �/j � C˛;ˇ;N 2

�kN; 2k�1 � j�j � 2kC2;

and we can incorporate rk into bk , and hence Rk.t/ into Bk.t/. Thus we can write

.@t C iP /W.t/D

1X
kD2

Bk.t/CP ı . 0.D/C .D// � B.t/:

We now can generate the exact wave group E.t/ for @t C iP by iteration,

E.t/DW.t/�

Z t

0

W.t � s/B.s/ dsC

Z t

0

Z s

0

W.t � s/B.s� r/B.r/ dr ds� � � � :
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To write the iteration more concisely, letƒm�RmC1
C

be them-simplex, consisting of r D .r1; : : : ; rmC1/

with rj > 0 for all j , and with r1C� � �C rmC1D 1. Let dr be the measure on ƒm induced by projection
onto .r1; : : : ; rm/. Then

E.t/D

1X
mD0

.�t /m
Z
ƒm
W.trmC1/B.t rm/ � � �B.tr1/ dr: (6-4)

If Cs is an upper bound for the H s.Rd / operator norm of both W.t/ and B.t/ for all jt j � 1, then the
m-th term has H s.Rd / operator norm at most CmC1s tm=mŠ , and the following theorem holds.

Theorem 6.5. The expansion (6-4) converges uniformly over jt j � 1, in the operator norm topology on
H s.Rd / for all s 2 R. The limit E.t/ is a one-parameter group of L2-unitary operators, and for f 2H s,
F 2 L1.Œ�1; 1�;H s/, the solution to .@t C iP /uD F , u.0; � /D f is given by

u.t; � /DE.t/f C

Z t

0

E.t � s/F.s; � / ds:

Our next two results show that if we localize E.t/ on the right to frequency scale 2k, then modulo a
smoothing operator error one can localize each of the terms W.trj / and B.trj / in (6-4) to frequencies of
scale 2k. We use the notation Q k D  k�1C kC kC1, and define

zWk.t/D Q k.D/.Wk�1CWkCWkC1/.t/;

zBk.t/D Q k.D/.Bk�1CBkCBkC1/.t/:
(6-5)

Lemma 6.6. If mC 1� 2
k
4 , then for all N � 0 the operator

Rk;r.t/DW.trmC1/B.t rm/ � � �B.tr1/ k.D/� zWk.t rmC1/ zBk.t rm/ � � � zBk.t r1/ k.D/

satisfies the following, with constant CN independent of m, t , k, and r:

kRk;r.t/f kHN � CN 2
�kN
kf kH�N :

Proof. Fix t and r , and without loss of generality assume t � 0. We introduce a family of intermediate
cutoffs  k;j .D/ for 1� j �m, which depend on tr . Define points 10

9
� p0j�1 <pj <p

0
j �

5
4

as follows.
Take c0 and c1 such that p0 D ec0 D 10

9
, and ec0C2c1 D 5

4
. For j � 0 we set

pj D e
c0Cc1.r1C���Crj /tCc1j2

�k
4
; p0j D e

c0Cc1.r1C���Crj /tCc1.jC 12/2
�k
4
:

Thus k is supported where j�j2 Œp�10 2k; p02
kC1�, and Q k.�/D1 on the set f� W j�j2 Œp0m

�1
2k; p0m2

kC1�g.
Also,

jp0j �pj j �
1
2
c12
�k
4 ; jpjC1�p

0
j j � c1rjC1t C

1
2
c12
�k
4 :

Let  k;0 D  k . By the comments following (6-2) we can construct functions  k;j .�/ for j � 1 that
satisfy (6-2), with constants C˛ that depend only on the dimension d , such that

supp. k;j /�
˚
� W j�j 2 Œ p0j

�1
2k; p0j 2

kC1�
	
; j� 0;

 k;j .�/D 1 if j�j 2 Œ p�1j 2k; pj 2
kC1�; j� 1:
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Let c0
d
D supx;�.j�j

�1jrxpk.x; �/j/. cd . Then for solutions to the Hamiltonian flow,

exp.�c0d t rj / j�.s/j � j�.sC t rj /j � exp.c0d t rj / j�.s/j:

Then if c0
d
� c1, the condition of Lemma 6.1 with ı D 1

4
c1 is satisfied for a2 D  k;j and a1 D  k;j�1.

Thus Lemma 6.1 yields, for j � 1,

k.1� k;j .D//B.t rj / k;j�1.D/kH s!H s � Cs;N 2
�kN for all s; N:

Since B.t/ k;j .D/ D zBk.t/ k;j .D/, and the number of terms is at most m � 2
k
4 , we can apply this

repeatedly to write

W.trmC1/B.t rm/ � � �B.tr1/ k.D/

D zWk.t rmC1/ k;m.D/ zBk.t rm/ � � � k;1.D/ zBk.t r1/ k.D/CRk;r.t/;

where kRk;r.t/kH s!H s � Cs;N 2
�Nk for all s; N. We then prove Lemma 6.6 by observing that the

same steps let us write

zWk.t rmC1/ k;m.D/ zBk.t rm/ � � � k;1.D/ zBk.t r1/ k.D/

D zWk.t rmC1/ zBk.t rm/ � � � zBk.t r1/ k.D/CRk;r.t/

for a similar Rk;r.t/. Since Rk;r.t/ is localized on the right at frequency 2k, it follows that

kRk;r.t/kH�N!HN � CN 2
�kN

for all N. �

Corollary 6.7. One can write

E.t/D

1X
kD0

2k=4X
mD0

.�t /m
Z
ƒm

zWk.t rmC1/ zBk.t rm/ � � � zBk.t r1/ k.D/ drCR.t/;

where for all N we have kR.t/f kHN � CN kf kH�N , uniformly over jt j � 1.

Proof. Consider
1X

mD2k=4

.�t /m
Z
ƒm
W.trmC1/B.t rm/ � � �B.tr1/ k.D/ dr:

For jt j � 1 and all N, the HN !HN operator norm of this sum is bounded by the sumX
m�2k=4

CmC1N =mŠ� CN 2
�3kN:

It is localized on the right at frequency 2k, and thus maps H�N !HN with norm � CN 2�kN. �

The arguments leading to Lemma 6.6 apply equally well to conic localization. We take a finite partition
of unity on Rdnf0g,

1D
X
!2„

a!.D/; supp.a!.�//�
�
� W

ˇ̌̌̌
! �

�

j�j

ˇ̌̌̌
�
1

32

�
:
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Let Qa!.�/ be a smooth, homogeneous cutoff such that

Qa!.�/D 1 if
ˇ̌̌̌
! �

�

j�j

ˇ̌̌̌
�
1

24
; supp. Qa!/�

�
� W

ˇ̌̌̌
! �

�

j�j

ˇ̌̌̌
�
1

16

�
:

We define an angularly localized version of zWk , recalling (6-5),

zW !
k .t/D Qa!.D/

zWk.t/ Qa!.D/;

zB!k .t/D Qa!.D/
zBk.t/ Qa!.D/:

(6-6)

Then,

R!k;r.t/DW.trmC1/B.t rm/ � � �B.tr1/a!.D/ k.D/

� zW !
k .t rmC1/

zB!k .t rm/ � � �
zB!k .t r1/a!.D/ k.D/ (6-7)

satisfies the conclusion of Lemma 6.6, and consequently, with R.t/ as in Corollary 6.7,

E.t/D

1X
kD0

X
!2„

zE!k .t/CR.t/;

where we define

zE!k .t/D

2k=4X
mD0

.�t /m
Z
ƒm

zW !
k .t rmC1/

zB!k .t rm/ � � �
zB!k .t r1/a!.D/ k.D/: (6-8)

Lemma 6.8. Let fx;�.y/D 2
kd
4 eih�;y�xif .2

k
2 .y � x//. Assume that f is a Schwartz function, and let

.xt ; �t /D �t .x; �/. Then one can write

. zE!k .t/fx;�/.z/D 2
kd
4 eih�t ;z�xt ih.t; 2

k
2 .z� xt //� h.t; � /xt ;�t ;

where for all N,

j@
j
t @

zh.t; z/j � CN;j; 2

k
2
j .1Cjzj/�N:

For each N; j;  , the constant CN;j; is bounded by a Schwartz seminorm of f , but is uniform over k; x; � .

Proof. Let K.s; y; �I x; �/ denote the integral kernel of Tk zB!k .s/T
�
k

. Following the proof of (6-3) we can
bound, with CN uniform over k and s,

jK.s; y; �I x; �/j � CN .1C 2
k
2 jy � xsjC 2

�k
2 j�� �sj/

�N:

Furthermore, this kernel vanishes unless 2k�2 � j�j; j�j � 2kC3. By the bilipschitz property of the
Hamiltonian flow, for such �; � we have

jys � xsjC 2
�k
j�s � �sj � Ajy � xjC 2

�kAj�� �j: (6-9)

For N � 2d C 1, we then bound the kernel of

Tk zB
!
k .t r1/

zB!k .t r2/T
�
k D .Tk

zB!k .t r1/T
�
k /.Tk

zB!k .t r2/T
�
k /
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by C 2N multiplied by the quantityZ
.1C 2

k
2 jy � ztr1 jC 2

�k
2 j�� �tr1 j/

�N .1C 2
k
2 jz� xtr2 jC 2

�k
2 j� � �tr2 j/

�Ndz d�

� AN .1C 2
k
2 jy � xt.r1Cr2/jC 2

�k
2 j�� �t.r1Cr2/j/

�N:

Similarly, for r 2ƒm the operator Tk zW !
k
.t rmC1/ zB

!
k
.t rm/ � � � zB

!
k
.t r1/T

�
k

has kernel bounded by

CN .ANCN /
m.1C 2

k
2 jy � xt jC 2

�k
2 j�� �t j/

�N;

and summing over m gives the following bounds for the kernel of Tk zE!k .t/T
�
k

,

j zK!k .t; y; �I x; �/j � CN e
tANCN .1C 2

k
2 jy � xt jC 2

�k
2 j�� �t j/

�N:

Let F D Tk.fx;�/. Then

jF. Nx; N�/j � CN .1C 2
k
2 j Nx� xjC 2�

k
2 j N� � �j/�N:

Then . zE!
k
.t/fx;�/.z/ is equal to

2
kd
4

Z
zK!k .t; y; �I Nx;

N�/ F. Nx; N�/ eih�;z�yig.2
k
2 .z�y// d Nx d N� dy d�:

The change of variables
.y; �/! .xt C 2

�k
2 y; �t C 2

k
2 �/;

. Nx; N�/! .xC 2�
k
2 Nx; �C 2

k
2 N�/

shows that h.t; z/D 2�
kd
4 e�i2

�k=2h�t ;zi. zE!
k
.t/fx;�/.xt C 2

�k
2 z/ is equal toZ

zK!k .t; xt C 2
�k
2 y; �t C 2

k
2 �I xC 2�

k
2 Nx; �C 2

k
2 N�/F.xC 2�

k
2 Nx; �C 2

k
2 N�/

� e�i2
�k
2 h�t ;yieih�;z�yig.z�y/ d Nx d N� dy d�:

By the bilipschitz property (6-9) of �t we have

jyjC j�j � Aj NxjCAj N�jC 2
k
2 j.xt C 2

�k
2 y/� .xC 2�

k
2 Nx/t jC 2

�k
2 j.�t C 2

k
2 �/� .�C 2

k
2 N�/t j;

and conclude that

j zK!k .t; xt C 2
�k
2 y; �t C 2

k
2 �I xC 2�

k
2 Nx; �C 2

k
2 N�/j � CN .1CjyjC j�j/

�N .1Cj NxjC j N�j/N:

Together with the bound

jF.xC 2�
k
2 Nx; �C 2

k
2 N�/j � CN .1Cj NxjC j N�j/

�2N;

this leads to the following estimates on @zh.t; z/, which is the case j D 0:

j@zh.t; z/j � CN; .1Cjzj/
�N: (6-10)

The constant CN; is seen to be bounded by a Schwartz seminorm of f , but uniform over k; x; � .
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To handle time derivatives we proceed by induction, and assume the estimates on @it@

zh.t; z/ hold for

0� i � j , and all  . We write

zE!k .t/fx;� D
zW !
k .t/fx;� C

Z t

0

zW !
k .t � s/

zE!k .s/fx;� ds;

where on the right the term zE!
k
.t/, defined in (6-8), has upper summation limit reduced by 1. This does

not affect the validity of (6-10), since the proof of (6-10) is done separately for each value of m. By
Lemma 6.2 the first term satisfies the conditions of the statement, since the proof of that lemma works
equally well for Bk.t/ replaced by zW !

k
.t/. The desired estimates on h are then a consequence of the

following, for the given value of j and all  :ˇ̌̌̌
.@z � i�t /

 .@t C ipk.xt ; �t //
jC1

Z t

0

zW !
k .t � s/

zE!k .s/fx;� ds

ˇ̌̌̌
� CN;jC1;2

kd
4 2

k
2
.j jCjC1/.1C 2

k
2 jz� xt j/

�N: (6-11)

This is seen by noting that

e�ih�t ;z�xt i.@t C ipk.xt ; �t //
�
eih�t ;z�xt ih.t; 2

k
2 .z� xt //

�
D .@th/.t; 2

k
2 .z� xt //�

�
irxpk.xt ; �t / � .z� xt /hC 2

k
2 .r�pk/.xt ; �t / � rzh

�
.t; 2

k
2 .z� xt //:

The latter terms are controlled by the spatial derivative bounds on h, and their time derivatives are
controlled by the bounds

j@it .rxpk/.xt ; �t /j � Ci 2
kCk

2
i ; j@it .r�pk/.xt ; �t /j � Ci 2

k
2
i ;

which follow by Corollary 3.2 and (2-7).
To establish (6-11) we expand

.@t C ipk.xt ; �t //
jC1

Z t

0

zW !
k .t � s/

zE!k .s/fx;� ds

D

jX
iD0

.@t C ipk.xt ; �t //
j�i Œ.@r C ipk.xtCr ; �tCr//

i zW !
k .r/

zE!k .t/fx;� �rD0

C

Z t

0

.@t C ipk.xt ; �t //
jC1 zW !

k .t � s/
zE!k .s/fx;� ds:

The latter term on the right is handled by Lemma 6.2, since we have already shown that zE!
k
.s/fx;� D

f .s; � /xs ;�s , where f .s; � / is a bounded family of Schwartz functions. The first term on the right expands
into a sum of terms

Œ@nt .@r C ipk.xtCr ; �tCr//
i zW !

k .r/�rD0.@t C ipk.xt ; �t //
j�n�i zE!k .t/fx;� : (6-12)

We can write Œ@nt .@r C ipk.xtCr ; �tCr//
i zW !

k
.r/�rD0 as a sum of terms

.@
n1
t pk.xt ; �t // � � � .@

nm
t pk.xt ; �t //Œ.@r C ipk.xtCr ; �tCr//

l zW !
k .r/�rD0;
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where n1C� � �CnmCmC l D nC i , and each nj � 1. By Lemma 6.2 and the induction assumption we
can write

Œ.@r C ipk.xtCr ; �tCr//
l zW !

k .r/�rD0.@t C ipk.xt ; �t //
j�n�i zE!k .t/fx;� D 2

k
2
.lCj�n�i/f .t; � /xt ;�t

for a bounded family of Schwartz functions f .t; � /. The estimates

j@
nj
t pk.xt ; �t /j � Cnj 2

k
2
.njC1/; nj � 1;

then show that the term in (6-12) is of the form 2
k
2
jf .t; � /xt ;�t for a bounded family of Schwartz functions

f .t; � /, which implies (6-11). �

We use this to establish sideways energy estimates for E.t/, which state that if the initial data f is
microlocalized to frequencies within a small angle of the codirection !, then the L2 norm of the restriction
of E.t/f to space-time hyperplanes perpendicular to ! is dominated by the L2 norm of f . By rotation
and translation invariance it suffices to consider ! D e1 and the plane x1 D 0.

Theorem 6.9. Suppose � 2 C1c
��
�
1
2
; 1
2

��
. Then�.t/.ae1.D/ k.D/E.t/f /ˇ̌x1D0L2x0L2t � Ckf kL2

for a constant C that is independent of k.

Proof. By Lemma 6.6 and the comments following Corollary 6.7, it suffices to show that�.t/. zEe1
k
.t/f /

ˇ̌
x1D0


L2
x0
L2t
� Ckf kL2 :

For � 2Rd with j†.�; e1/j � 1
2

and jsj � 2, the null bicharacteristic curve .s/2 .RdC1/� of �Cpk.y; �/
that passes over .x; �/ at time sD 0 satisfies 4

5
� jy01.s/j �

5
4

. Consequently, if jx1j � 3
2

and j†.�; e1/j � 1
2

there is a unique value s D s.x; �/ in fs W jsj � 2g such that .s.x; �// 2 fy1 D 0g. We parametrize
the cotangent bundle of y1 D 0 by .t; y0; �; �0/, and let T 0

k
be the wave packet transform acting on

this plane. Observe that the integral kernel zKe1
k
.t; y0; �; �0I x; �/ of T 0

k
.�.t/ zE

e1
k
.t/T �

k
/ vanishes unless

j†.�; e1/j �
1
2

.
We show that if jx1j � 3

2
, then

j zK
e1
k
.t; y0; �; �0I x; �/j

� CN
�
1C 2

k
2

ˇ̌
.t; y0/�…t;y0.s.x; �//

ˇ̌
C 2�

k
2

ˇ̌
.�; �0/�…�;�0.s.x; �//

ˇ̌��N
: (6-13)

The Schur test, and the fact that .x; �/! .s.x; �//
ˇ̌
y1D0

is a bilipschitz symplectic map, shows L2

boundedness of T 0
k
�.t/ zE

e1
k
.t/T �

k
1
jx1j<

3
2

. We consider the case jx1j> 3
2

afterwards.
To prove (6-13), we use Lemma 6.8 to express zKe1

k
.t; y0; �; �0I x; �/ as

2
kd
2

Z
eih�s ;.0;z

0/�xsi�i�.s�t/�ih�
0;z0�y0ih.s; 2

k
2 ..0; z0/� xs// g.2

k
2 .s� t; z0�y0// ds dz0:
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Since  is null, we have …�.s/D�p.xs; �s/D�h�s; @sxsi. We then note that

.@z0 C i.�
0
� � 0s//e

ih�s ;.0;z
0/�xsi�i�.s�t/�ih�

0;z0�y0i

D 0

D
�
@sC i.� Cpk.xs; �s//� ih@s�s; .0; z

0/� xsi
�
eih�s ;.0;z

0/�xsi�i�.s�t/�ih�
0;z0�y0i:

Applying each of 2�
k
2 @z0 , 2�

k
2 @s , or h@s�s; .0; z0/� xsi to the amplitude term h.� � �/g.� � �/ preserves its

form. An integration by parts argument, together with Schwartz bounds on h and g, then shows that the
integral is dominated in absolute value by

CN 2
kd
2

Z �
1C2�

k
2 j�0�� 0sjC2

�k
2 j�Cpk.xs; �s/jC2

k
2 js�t jC2

k
2 jz0�y0jC2

k
2 j.0; z0/�xsj

��N
ds dz0:

(6-14)
Note that j.xs/1j � 4

5
js� s.x; �/j as j@s.xs/1j � 4

5
. Since 2�k�s , 2�kpk.xs; �s/, and xs are all uniformly

Lipschitz in s, the integral is in turn bounded by

CNC2nC1 2
kd
2

Z
.1C 2

k
2 js� t jC 2

k
2 jz0�y0j/�2n�1 ds dz0

�
�
1C 2�

k
2 j.�; �0/�…�;�0.s.x; �//jC 2

k
2 j.t; y0/�…t;y0.s.x; �//j

��N
;

which yields the estimate (6-13) for jx1j � 3
2

.
If jx1j � 3

2
, jt j � 1, we have j.xt /1j � 1

6
jx1j �

1
4
jt j. By a proof similar to above, (6-14) then leads to

the following bounds:

j zK
e1
k
.t; y0; �; �0I x; �/1

jx1j�
3
2
j � CN

�
1C2�

k
2 j�Cpk.x; �/jC2

�k
2 j�0� � 0jC2

k
2 jx1jC2

k
2 jy0�x0j

��N
:

Here we use, for example, that

jx1jC jy
0
� x0j. j.x1/t jC jy0� x0j. j.x1/sjC jy0� x0sjC js� t j

by the above. The Schur test, and the fact that .x; �1; � 0/! .x; pk.x; �/; �
0/ is a diffeomorphism on

j†.�; e1/j �
1
2

, proves L2 boundedness of the operator T 0
k
�.t/ zE

e1
k
.t/T �

k
1
jx1j�

3
2

. �

We now turn to the proof of (2-14) for the operator E.t/, that is,

khDi�sE.t/f kLqt L
r
x.Œ0;1��Rd / � Ckf kL2.Rd /;hDi�sZ t

0

E.t � s/F.s; � / ds


L
q
t L
r
x.Œ0;1��Rd /

� CkhDi1�sF k
L
Qq0

t L
Qr0
x .Œ0;1��Rd /

for s; q; Qq; r; Qr satisfying the conditions of Theorem 1.1. A consequence of Corollary 6.7 is that

a!.D/ k.D/E.t/D a!.D/ k.D/E.t/a
0
!.D/ 

0
k.D/C a!.D/ k.D/R.t/;

with R.t/ a smoothing operator, and a0!.�/ 
0
k
.�/ a S01;0 cutoff to a ı2k neighborhood of the support of

a!.�/ k.�/. Since q; r � 2� Qq0; Qr 0, it suffices by Littlewood–Paley theory to prove that, for a constant C
independent of k,

ka!.D/ k.D/E.t/f kLqt L
r
x.Œ0;1��Rd / � C 2

ks
kf kL2.Rd /;
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and thatZ t

0

a!.D/ k.D/E.t � s/a
0
!.D/ 

0
k.D/F.s; � / ds


L
q
t L
r
x.Œ0;1��Rd /

� C 2kkF k
L
Qq0

t L
Qr0
x .Œ0;1��Rd /

:

Since E.t/E�.s/DE.t � s/, we can apply [Keel and Tao 1998, Theorem 1.2] with a scaling of .t; x/
by 2k to conclude that these are implied by the estimate

ka0!.D/ 
0
k.D/E.t � s/a

0
!.D/ 

0
k.D/f kL1.Rd / � C 2

kd .1C 2kjt � sj/�
d�1
2 kf kL1.Rd /:

By Corollary 6.7 and the comments following it, this estimate in turn is implied by proving the same
estimate with E.t � s/ replaced by zE!

k
.t � s/. Letting zK!

k
.t; x; y/ be the integral kernel of zE!

k
.t/, we

need to show that

j zK!k .t; x; y/j � C 2
kd .1C 2kjt j/�

d�1
2 ; jt j � 1:

We in fact prove a stronger estimate, which captures the decay of the fundamental solution away from
the light cone. We will show in Section 7 that, for all N, with St .y/ the geodesic sphere of radius jt j
centered at y, and dist.x; St .y// the geodesic distance in gk of x to the set St .y/,

j zK!k .t; x; y/j � CN 2
kd .1C 2kjt j/�

d�1
2 .1C 2kjdist.x; St .y//j/�N; (6-15)

which will imply (2-14) by the above.
By similar steps and duality, estimate (2-15) reduces to proving that, for qd and sd as in Theorem 1.2,

and � 2 C1c
��
�
1
2
; 1
2

��
,�.t/Z zE!k .t � s/�.s/F.s; � / ds

L
qd
x L2t

� C 22ksd kF k
L
q0
d
y L2s

:

It suffices to prove this for ! D e1. We deduce from (6-15) that

j zK!k .t; x; y/j � CN 2
kd .1C 2kjx�yj/�

d�1
2

�
1C 2k

ˇ̌
t � dist.x; y/

ˇ̌ ��N
;

which uses that dist.x; St .y// � jt � dist.x; y/
ˇ̌

and dist.x; y/ � jx � yj. As a consequence, letting
x D .x1; x

0/, we have�.t/Z zKe1k .t � s; x1; x0; y1; y0/�.s/F.s; y1; y0/ ds dy0
L1
x0
L2t

� C 2k.d�1/.1C 2kjx1�y1j/
�d�1

2 kF. � ; y1; � /kL1
y0
L2s
:

On the other hand, writing E.t � s/ D E.t/E.s/�, Theorem 6.9 and the comments surrounding (6-7)
show that�.t/Z zKe1k .t � s; x1; x0; y1; y0/�.s/F.s; y1; y0/ ds dy0

L2
x0
L2t

� CkF. � ; y1; � /kL2
y0
L2s
:
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Interpolation then yields�.t/Z zKe1k .t � s; x1; x0; y1; y0/�.s/F.s; y1; y0/ ds dy0
L
qd
x0
L2t

� C 22ksd jx1�y1j
�1C 1

q0d
� 1
qd kF. � ; y1; � /k

L
q0
d
y0
L2s

;

and an application of the Hardy–Littlewood inequality yields the desired bound.

7. Wave packets and dispersive estimates

This section is devoted to the proof of (6-15) for jt j � 1. Without loss of generality we assume 0� t � 1
throughout to simplify notation.

To motivate the proof we recall Fefferman’s analysis [1973] of exp.�i jDj/, the wave group for the
Euclidean laplacian at t D 1. Consider

Kk.x/D .2�/
�n

Z
eihx;�i�i j�j  k.�/ d�:

Following [Fefferman 1973], we have the decomposition  k.�/ D
P
�  

�
k
.�/, where  �

k
equals

 k multiplied by a homogeneous cutoff to a conic neighborhood of angle 2�
k
2 about the direction

� 2 Sd�1, and � varies over a discrete set of directions separated by distance 2�
k
2 . The function  �

k

behaves like a scaled cutoff to a rectangle of dimension 2k � .2
k
2 /d�1 in that

jh�; @�i
m@˛� 

�
k .�/j � Cm;˛2

�k.mC j˛j
2
/;

with constants independent of k. The angular width is selected since one can write

e�i j�j  �k .�/D e
�ih�;�i a�k.�/;

where a�
k

satisfies the same derivative estimates as  �
k

. Then we have the decomposition

Kk.x/D
X
�

f �k .x� �/; where Of �k .�/D a
�
k.�/:

The function f �
k
.x��/ is concentrated in a rectangle centered at �, of dimension 2�k along the �-direction

and 2�
k
2 in perpendicular directions. By the spacing of the indices � these rectangles are essentially

disjoint, and simple geometry shows that, for all N,

jKk.x/j � CN 2
k.dC1

2
/.1C 2kjjxj � 1j/�N:

If 2�k � t � 1, the above argument can be scaled by t to decompose the kernel of exp.�i t jDj/. This
gives a t-dependent splitting  k D

P
�  

�
k;t

, where now  �
k;t

is localized to a cone of angle t�
1
2 2�

k
2 ,

and the f �
k;t
.x� t�/ are concentrated in a rectangle of dimensions 2�k and t

1
2 2�

k
2 , centered at t�. These

rectangles are again mutually disjoint, leading to bounds

jKk.t; x/j � CN 2
k.dC1

2
/t�.

d�1
2
/.1C 2kjjxj � t j/�N:
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For 0� t � 2�k , the symbol e�it j�j is a classical symbol, and the kernel has the same size as O k.�x/, or
as Kk.t; x/ at t D 2�k.

The decomposition of [Fefferman 1973] was used in [Seeger, Sogge, and Stein 1991] to estimate the
kernel of oscillatory integral operators with nondegenerate phase functions, for example exp.�iP / for
a smooth metric. The key ingredient is that the phase function '.x; �/ can be linearized in � over the
support of each  �

k
, up to an error that behaves like an appropriate amplitude function.

Getting the correct kernel estimates for t � 1 requires better estimates on the phase function for it to
linearize over the support of  �

k;t
. The needed estimates are precisely those of (4-7), and the corresponding

estimates for amplitudes are those of (4-8).
The proof of the estimates in (6-15) for a single term zW !

k
.t/ or zB!

k
.t/ would follow along the lines

of [Seeger, Sogge, and Stein 1991], using the decomposition  �
k;t

, together with (4-7)–(4-8). We need,
however, to prove these estimates for a product of arbitrarily many terms

Q
j
zB!
k
.t rj /, where

P
rj D 1.

It is still appropriate to use the partition  �
k;t

for each term; however, we need a function space argument
in order to handle a product of terms since there is no hope for controlling the operator product using a
symbol calculus. We therefore work with a wave packet frame and function spaces using weighted norms
in that frame that grow with the distance to a given point .x0; �0/ on the cosphere bundle. We prove that
the operator zB!

k
.s/ is bounded from the space weighted at .x0; �0/ to the space weighted at its time-s

flowout .xs; �s/. These function space estimates iterate and yield a convergent sum, which is sufficient to
prove the bounds in (6-15).

The wave packet frame. We will establish (6-15) for 2�k � t � 1; the proof for 0 � t � 2�k follows
by using the same proof as for t D 2�k. We consider t to be fixed for this section and suppress the
dependence of the frame on t ; however, we note that all constants are uniform over t 2 Œ0; 1�.

We prove the estimate by studying the behavior of zE!
k
.t/ in a family of wave packets that form a frame

for functions that are frequency localized at scale 2k. The wave packet frame that we use at scale 2k is essen-
tially a spatial dilation by t�1 of the scale t2k parabolic wave packets of [Smith 1998]. The only difference
is that our frame covers more than one dyadic region, but we provide the details here for completeness.

We will be expanding functions with Fourier transform supported in the annulus

Ak D
˚
� W 4

5
2k�1 � j�j � 5

4
2kC2

	
:

LetA0
k
D
˚
� W 2

3
2k�1�j�j� 3

2
2kC2

	
. We construct a partition of unity onAk , supported inA0

k
, of the form

1D
X
�2‡k;t

ˇ�k;t .�/
2 when � 2 Ak; supp.ˇ�k;t /��

�
k;t ;

where ‡k;t is a collection of unit vectors separated by t�
1
2 2�

k
2 , and ˇ�

k;t
.�/ satisfies the following

estimates:

jh�; @�i
j @˛�ˇ

�
k;t .�/j � Cj;˛ 2

�kj .t�
1
2 2

k
2 /�j˛j: (7-1)

Observe that ��
k;t

, defined in (4-6), is contained in a rectangle of dimension 2kC3 along the direction �,
and t�

1
2 2

k
2 along the directions orthogonal to �. For each �, let „�

k;t
be a rectangular lattice in Rn
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with spacing 2� � 2�k�3 along the �-direction and spacing 2� � t
1
2 2�

k
2 in directions orthogonal to �. Let

�k;t D f.x; �/ W x 2„
�
k;t
; � 2 ‡k;tg, which is a discrete subset of the cosphere bundle S�.Rd /. We use

 D .x; �/ to denote a variable in S�.Rd /, and for  2 �k;t we set

O� .�/D 2
� 3
2 2�k.

dC1
4
/t
d�1
4 e�ihx;�iˇ�k;t .�/:

Then, with h�?; @yi denoting derivatives in directions perpendicular to �,

jh�?; @yi
˛@ˇy� .y/j

� CN;˛;ˇ 2
k.dC1

4
/ t�

d�1
4 2kjˇ j .t�

1
2 2

k
2 /j˛j .1C 2kjh�; y � xijC t�12k jy � xj2/�N: (7-2)

Functions f 2 L2.Rn/ with supp. Of /� Ak admit an expansion in f�g2�k;t ,

f D
X
2�k;t

c� ; c D

Z
� .y/f .y/ dy:

We define a pseudodistance function on the cosphere bundle S�.Rd / by

dt .x; �I x
0; �0/D jh�; x� x0ijC jh�0; x� x0ijC t j� � �0j2C t�1jx� x0j2:

This is the parabolic pseudodistance of [Smith 1998] scaled like the wave packet frame, and it satisfies,
for all t > 0,

dt . I 
00/� 4dt . I 

0/C 4dt .
0
I  00/: (7-3)

It is also approximately invariant under the Hamiltonian flow �s for s� t . This was proven forC 1;1 metrics
in [Smith 1998]; we provide the proof here for metrics of bounded curvature.

Lemma 7.1. For some C and all 0 � s � t � 1, and �s the projected Hamiltonian flow map for any
metric gM satisfying (3-1)–(3-3), we have

C�1 dt . I 
0/� dt .�s./I�s.

0//� C dt . I 
0/:

Proof. Let �D� and �0D�0. If .xs; �s/ is the (nonprojected) Hamiltonian flow of .x; �/, then jj�sj�1j.cd ,
so we can replace �s by �s in the distance function. From Corollary 3.2, when j�j D 1 we have the bounds
j@�xsj. s, j@xxsjC j@x�sjC j@��sj. 1, and we deduce

jx0s � xsjC t j�
0
s � �sj. jx

0
� xjC t j�0� �j:

Applying this also to ��s we obtain

t�1jx0s � xsj
2
C t j� 0s � �sj

2
� t�1jx0� xj2C t j�0� �j2:

By symmetry it thus suffices to show that

jh�; x0� xi � h�s; x
0
s � xsij. t

�1
jx0s � xsj

2
C t j�0� �j2: (7-4)
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Let ' be the phase function for gM , and write xDr�'.s; xs; �/ and �s Drx'.s; xs; �/. By homogeneity,

h�; x0�xi�h�s; x
0
s�xsi D h�;r�'.x; x

0
s; �
0/�r�'.s; xs; �/i�hrx'.s; xs; �/; x

0
s�xsi

D '.s; x0s; �
0/�'.s; xs; �/�hx

0
s�xs;rx'.s; xs; �/i�h�

0
��;r�'.s; x

0
s; �
0/i:

Observe that, by Theorem 3.3,

jh�0� �;r�'.s; x
0
s; �
0/�r�'.s; xs; �/ij. j�0� �j.jx0s � xsjC t j�

0
� �j/

. t�1jx0s � xsj
2
C t j�0� �j2:

Consequently, it suffices to show that the error bound for the first-order Taylor expansion of '.s; x0s; �
0/�

'.s; xs; �/ is bounded by the right-hand side of (7-4). The estimates (4-1)–(4-4) give j@2x'kj . 1,
j@x@�'kj. 1, j@2�'kj. jsj, and hence the remainder is dominated by

jx0s � xsj
2
Cjx0s � xsjj�

0
� �jC t j�0� �j2 � 3

2
t�1jx0s � xsj

2
C
3
2
t j�0� �j2;

giving the desired bound. �

For any given integer M � 0 and point 0 2 S�.Rd /, we define a weighted norm space

kf k2M;0 D
X


.1C 2kdt . I 0//
2M
jc .f /j

2; c .f /D

Z
� .y/f .y/ dy:

For dyadically localized f , this norm roughly measures how far f is from being a wave packet centered
at 0. In the next subsection we will prove the following theorem.

Theorem 7.2. Suppose that 0 � s � t � 1, 0 2 �k;t , and �s.0/D .xs; �s/, where �s is the projected
Hamiltonian flow for gk . Then for all l; ˇ;N, there are constants Cl;ˇ;N so that

jh�?s ; @xi
˛@ˇx .

zB!k .s/�0/.x/j

� CN;˛;ˇ 2
k.dC1

4
/t�

d�1
4 2kjˇ j.t�

1
2 2

k
2 /j˛j

�
1C 2kjh�s; x� xsijC t

�12kjx� xsj
2
��N

: (7-5)

In the remainder of this subsection we deduce (6-15) from Theorem 7.2. First we deduce k � kM;�s./
mapping properties for zB!

k
.s/ from (7-5). The left-hand side of (7-5) vanishes unless †.!; /� 1

4
, so

we may assume †.!; s/� 1
2

.

Lemma 7.3. Suppose that Of is supported in the set
˚
n W †.�; �0/�

1
2

	
, and for all N; ˛; ˇ we have

jh�?0 ; @yi
˛@ˇy f .y/j�CN;˛;ˇ 2

k.dC1
4
/ t�

d�1
4 2kjˇ j .t�

1
2 2

k
2 /j˛j

�
1C2kjh�0; y�x0ijCt

�12k jy�x0j
2
��N

:

Let 0 D .x0; �0/. Then for all M � 0 we have kf kM;0 � CM , where CM depends on only a finite
number of the CN;˛;ˇ .

Proof. Without loss of generality we assume that �0 D e1. By the derivative estimates we have

j Of .�/j � CN 2
�k.dC1

4
/ t

d�1
4 .1C 2�kj�1jC 2

�kt j�0j2/�N;
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where for each N the value of CN depends on only a finite number of CN;˛;ˇ . Since O� is supported
where j�0j � 2k�4j� � e1j, by Plancherel’s theorem we obtain for all N, and similar CN ,

jc .f /j � CN .1C 2
kt j� � e1j

2/�2N; c .f /D

Z
� .y/ f .y/ dx: (7-6)

By the pointwise estimates on f .y/ and � .y/, we have

jc .f /j � CN 2
k.dC1

2
/t�

d�1
2

Z
.1C 2kdt .y; e1I 0//

�2N�d .1C 2kdt .y; �I //
�2N�d dy:

By (7-3), noting that dt .y; e1Iy; �/D t j� � e1j2, we have

1
16
dt .�; 0/� dt .y; e1I 0/C dt .y; �I /C t j� � e1j

2:

Together with (7-6), this implies jc .f /j � CN .1C 2kdt . I 0//�N. The lemma then follows from the
bound

sup
 0

X
2�k;t

.1C 2k dt . I 
0//�d�1 � Cd ; (7-7)

which follows from estimate (2.3) in [Smith 1998] after rescaling. �

The converse to Lemma 7.3 also holds; we need it only for ˛ D ˇ D 0, and prove that version in the
proof of Corollary 7.5 below.

An immediate consequence of Theorem 7.2 and Lemma 7.3 is decay estimates on the matrix coefficients
of zB!

k
.s/. Precisely, for all N we haveˇ̌̌̌Z

� .y/. zB
!
k .s/� 0/.y/ dy

ˇ̌̌̌
� CN .1C 2

kdt . I�s.
0///�N: (7-8)

We then use this to prove boundedness of zB!
k
.s/ in the weighted norm spaces via the following lemma.

Lemma 7.4. Suppose that M � 0, 0� s � t � 1, and T W S.Rd /! S 0.Rd / is a linear map such that the
matrix coefficients

a.;  0/D

Z
� .y/.T� 0/.y/ dy

satisfy the bound
ja.;  0/j � .1C 2k dt . I�s.

0///�.MCdC1/:

Then, uniformly over 0 2 S�.Rd /, we have kTf kM;�s.0/ � CMkf kM;0 .

Proof. It follows from (7-7) that
sup
 0

X


ja.;  0/j � C;

and, since dt . I�s. 0//� dt .��s./I  0/ by Lemma 7.1, we also have

sup


X
 0

ja.;  0/j � C;
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where C is independent of s; t and k. By Schur’s lemma we conclude

k zB!k .s/f k0;�s.0/ � Ckf k0;0 :

The weighted case M � 1 follows by noting that

.1C 2kdt . I�s.0///. .1C 2kdt . I�s. 0///.1C 2kdt . 0I 0//;

which follows from

dt . I�s.0//� 4dt . I�s.
0//C 4dt .�s.

0/I�s.0//;

and the fact that dt .�s. 0/I�s.0//� dt . 0; 0/. �

Corollary 7.5. Let �s denote the time-s projected Hamiltonian flow for gk . Then for 0� s � t � 1, and
all M � 0,

k zE!k .s/f kM;�s.0/ � CMkf kM;0 ;

with constant CM independent of s, t , 0, !, and k.

Proof. By Lemma 7.4 and the estimate (7-8), which holds also for zW !
k
.s/ by the same proof, we have

k zB!k .s/f kM;�s.0/ � CMkf kM;0 :

The formula (6-8) for zE!
k
.t/ and the group property of �s then show that

k zE!k .s/f kM;�s./ �

1X
mD0

sm CmC1M

mŠ
kf kM; D CM esCM kf kM; : �

We conclude this section by deriving the bound (6-15) from Corollary 7.5. Write zK!
k
.t; x; y/ D

. zE!
k
.t/ıy/.x/. Since zE!

k
.t/ has the factor  k.D/ on the right, we may write

. zE!k .t/ıy/.x/D
X
�2‡k;t

�
zE!k .t/ˇ

�
k;t .D/

2ıy
�
.x/:

The function ˇ�
k;t
.D/2ıy has Fourier transform e�ihy;�iˇ�

k;t
.�/2. Up to a normalization factor, this

behaves like the frame element � at  D .y; �/, and it is easy to verify that for all M

kˇ�k;t .D/
2ıykM; � CM 2k.

dC1
4
/t�

d�1
4 :

By Corollary 7.5, letting t � .xt ; �t /D �t .y; �/ we have

k zE!k .t/ˇ
�
k;t .D/

2ıykM;t � CM 2k.
dC1
4
/t�

d�1
4 : (7-9)

This implies that, for all N,ˇ̌�
zE!k .t/ˇ

�
k;t .D/

2ıy
�
.x/
ˇ̌
� CN 2

k.dC1
2
/t�

d�1
2 .1C 2kjh�t ; x� xt ijC 2

kt�1jx� xt j
2/�N:

We see this using (7-9), that the frame coefficients fc 0g of zE!
k
.t/ˇ�

k;t
.D/2ıy satisfy for all M

jc 0 j � CM 2k.
dC1
4
/t�

d�1
4 .1C 2kdt .

0
I t //

�M:
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From estimates (7-2) on j� .x/j, we follow the proof of [Smith 1998, Lemma 2.5] with  0 D .x0; �0/ to
bound

ˇ̌�
zE!
k
.t/ˇ�

k;t
.D/2ıy

�
.x/
ˇ̌

by

CM2
k.dC1

2
/t�

d�1
2

X
 02�k;t

.1C 2kdt .
0
I t //

�M .1C 2kdt ..x; �
0/I  0//�M

� CM2
k.dC1

2
/t�

d�1
2

X
�02‡k;t

.1C 2kdt ..x; �
0/I t //

�M

� CM2
k.dC1

2
/t�

d�1
2 .1C 2kjh�t ; x� xt ijC 2

kt�1jx� xt j
2/�MC

d
2 :

Deriving (6-15) from Corollary 7.5 then reduces to showing thatX
�2‡k;t

.1C 2kjh�t ; x� xt ijC 2
kt�1jx� xt j

2/�N�d � CN .1C 2
k dist.x; St .y///�N:

If . Qxt ; Q�t /D �t .y; Q�/ and .xt ; �t /D �t .y; �/, then by Corollary 3.2

4
5
t �
j Qxt � xt j

j Q� � �j
�
5
4
t:

Consequently, the points xt are separated by t
1
2 2�

k
2 for � 2 ‡k;t , and thusX

�2‡k;t

.1C 2kt�1jx� xt j
2/�d � C:

It therefore suffices to show that, for cd small enough, and for each � 2 Sd�1,

jh�t ; x� xt ijC t
�1
jx� xt j

2
�
1
4

dist.x; St .y//: (7-10)

Here, xt 2St .y/ for each �, and �t is the unit normal to St .y/ at the point xt , in that h�t ; @�j xt j�D�iD 0,
which follows by homogeneity.

We observe that, by scaling, it suffices to prove (7-10) in the case t D 1. Precisely, .t�1xt ; �t / is the
image at time 1 of .t�1y; �/ under the projected Hamiltonian flow for the metric gk.t � /, and t�1St .y/
is the corresponding unit geodesic sphere centered at t�1y; hence the two sides of (7-10) dilate by the
same factor t . Furthermore, the metric gk.t � / satisfies conditions (3-1)–(3-3) with M D t2

k
2 � 2

k
2 .

Without loss of generality we assume � D e1 and y D 0. We introduce the notation .x.!/; n.!//D
�1.0; !/ to denote the mapping of the unit sphere Sd�1 onto the unit conormal bundle of S1.0/. By
Corollary 3.2, this map is C 1-close to the map !! .!; !/; precisely

jx.!/�!jC jr!x.!/�…
?
! jC jn.!/�!jC jr!n.!/�…

?
! j. cd :

As a consequence we may parametrize S1.0/\
˚
x1 > 0; jx

0j �
1
2

	
as a graph x1 D F.x0/, where

j@˛x.F.x
0/�

p
1� jx0j2 /j. cd ; j˛j � 2; jx0j � 1

2
: (7-11)
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This holds for j˛j � 1 by C 1 closeness of x.!/ to !, and for j˛j D 2 since

rx0F.x
0/D�n0.!.x0//=n1.!.x

0//

is C 1 close to �x0=
p
1� jx0j2.

The bound (7-10) is equivalent to proving, for x D .x1; x0/ 2 Rd,

min
!
jx� x.!/j � 4

�
jhn.e1/; x� x.e1/ijC jx� x.e1/j

2
�
:

We assume that jx�x.e1/j � 1
4

; hence jx0j � 1
2

, as the bound is immediate otherwise. The left-hand side is
bounded above by jx1�F.x0/j, and the bound then follows by the Taylor expansion of F.x0/ about x0.e1/,

jx1�F.x
0/j �

ˇ̌
x1�F.x

0.e1//� hx
0
� x0.e1/;rx0F.x

0.e1//i
ˇ̌
Cjx0� x0.e1/j

2

D n1.e1/
�1
jhn.e1/; x� x.e1/ijC jx

0
� x0.e1/j

2;

where we use that kr2x0F k � 2 for jx0j � 1
2

by (7-11) if cd is small, and F.x0.e1//D x1.e1/.

Proof of Theorem 7.2. We follow the key idea of [Seeger, Sogge, and Stein 1991], that the action of a
Fourier integral operator on a function f whose Fourier transform is suitably localized can be decomposed
as a pseudodifferential operator acting on f , followed by a change of coordinates. Suitably localized
means that the phase function can be written as a phase that is linear in � plus a term that satisfies the
estimates of a zero-order symbol on the support of Of .�/. Here we take f D � , with Of supported in the
set ��

k;t
defined by (4-6), and the zero-order symbol estimates are those of Corollary 5.2. The estimates

of Corollary 4.2 will be used to establish the linearization of 'k on ��
k;t

.
We prove Theorem 7.2 with zB!

k
.s/' replaced by Bk.s/; recall the definition (6-6) and (6-5). The

operator Qa!.D/ Q k.D/ is a mollifier on spatial scale 2�k and commutes with differentiation, and hence
preserves the estimates of Theorem 7.2, and Qa!.D/� satisfies the same conditions as � . The terms
Bk˙1.s/ will follow the same proof as for Bk.s/.

Without loss of generality we assume 0 D .0; e1/. We need to establish the bounds of Theorem 7.2
for the function

.Bk.s/�0/.x/D 2
� 3
2 2�k.

dC1
4
/t
d�1
4

Z
ei'k.s;x;�/bk.s; x; �/ˇ

e1
k;t
.�/ d�:

We can express this in the form

.Bk.s/�0/.x/D 2
� 3
2 2�k.

dC1
4
/t
d�1
4

Z
eihy.s;x/;�ieih.s;x;�/bk.s; x; �/ˇ

e1
k;t
.�/ d�;

where y.s; x/ D r�'k.s; x; e1/, and where by (4-9) on the support of ˇe1
k;t

the function h.s; x; �/ D
'k.s; x; �/� � � @�'k.s; x; e1/ satisfies

j@j�1@
˛
�0@

ˇ
xh.s; x; �/j � Cj;˛;ˇ 2

�kj .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j:

This, together with Corollary 5.2 and (7-1), leads to the estimates

j@j�1@
˛
�0@

ˇ
x .e

ih.s;x;�/bk.s; x; �/ˇ
e1
k;t
.�//j � Cj;˛;ˇ 2

�kj .t
1
2 2�

k
2 /j˛j 2

k
2
jˇ j: (7-12)
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We now express

.Bk.s/�0/.x/D 2
k.dC1

4
/t�

d�1
4 F.x; y.s; x//;

where

F.x; y/D 2�
3
2 2�k.

dC1
2
/t
d�1
2

Z
eihy;�ieih.s;x;�/bk.s; x; �/ˇ

e1
k;t
.�/ d�:

The estimates (7-12) and integration by parts leads to the bounds

j@jy1@
˛
y0@

ˇ
xF.x; y/j � CN;j;˛;ˇ 2

k
2
j j 2kjˇ j .t�

1
2 2

k
2 /j˛j.1C 2kjy1jC t

�12kjyj2/�N:

We now use the chain rule to express x-derivatives of the composition of F.x; y/ with y D y.s; x/ as
a sum of terms,

@xiF.x; y.s; x//D .@xiF /.x; y.s; x//C .ryF /.x; y.s; x// � @xiy.s; x/:

The @xi in the first term on the right counts as a factor of 2
k
2 in the derivative estimates, which is better

than the conclusion of Theorem 7.2. Similar considerations apply to terms in the expansion of higher-order
derivatives. Since we will estimate individually each term arising in such an expansion, we therefore can
consider functions F that are functions of only y. That is, we assume for all N that

j@jy1@
˛
y0F.y/j � CN;˛;ˇ 2

kj .t�
1
2 2

k
2 /j˛j.1C 2kjy1jC t

�12kjyj2/�N; (7-13)

and prove that the composition with y.s; x/ satisfies for all N

j=@
˛
x@
ˇ
xF.y.s; x//j � CN;˛;ˇ 2

kjˇ j.t�
1
2 2

k
2 /j˛j.1C 2kjh�s; x� xsijC t

�12kjx� xsj
2/�N; (7-14)

where =@x � h�?s ; @xi denotes derivatives in directions perpendicular to �s .
Since y.s; xs/D 0, and the map x! y.s; x/ is a globally bilipschitz map of Rd, with uniform bounds

on the map and its inverse, we have

jy.s; x/j2 � jx� xsj
2;

with the ratio of the two sides close to 1 for cd small. For a constant c close to 1, we also have

c�s D .rx'k/.s; xs; e1/D .rx@�1'k/.s; xs; e1/D .rxy1/.s; xs/:

We also have the equality y1.s; x/D 'k.s; x; e1/ by homogeneity, which by (4-1) implies

j@ˇxy1.s; x/j �

�
C; jˇj D 1;

C 2
k
2
.jˇ j�2/; jˇj � 2:

(7-15)

Together with a first-order Taylor expansion these imply that, for 0 < t � 1,

jy1.s; x/jC t
�1
jy.s; x/j2 � jh�s; x� xsijC t

�1
jx� xsj

2; (7-16)

with uniform bounds on the ratios. Together with (7-13) this gives (7-14) for j D ˛ D 0.
To bound derivatives, we use the chain rule to express =@˛x@

ˇ
xF.y.s; x// as a sum of terms of the form

.@my1@
�
y0F /.=@

˛1
x @

ˇ1
x y1/ � � � .=@

˛m
x @ˇmx y1/.=@

˛mC1
x @

ˇmC1
x y0/ � � � .=@

˛mCj�j
x @

ˇmCj�j
x y0/;
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where

˛ D

mCj� jX
jD1

j̨ ; ˇ D

mCj� jX
jD1

ǰ ; mCj� j � j˛jC jˇj:

The estimate (7-14) then follows from (7-13) and (7-16), together with the following bounds for the
derivatives of y.s; x/ for j˛jC jˇj � 1, and where 2�k � t � 1:

j=@
˛
x@
ˇ
xy1.s; x/j � C˛;ˇ 2

k.jˇ j�1/.t�
1
2 2

k
2 /j˛j.1C t�

1
2 2

k
2 jx� xsj/;

j=@
˛
x@
ˇ
xy
0.s; x/j � C˛;ˇ 2

kjˇ j.t�
1
2 2

k
2 /j˛j�1:

The second of these holds by the stronger bound of C˛;ˇ 2
k
2
.j˛jCjˇ j�1/ from Theorem 3.3, where if

j˛j D 0 we use that 2�k � .t�
1
2 2

k
2 /�1 and jˇj � 1. For the first, if j˛j D 1 and jˇj D 0, we use (7-15)

and that .=@xy1/.s; xs/D 0 to see that j=@xy1.s; x/j � C jx � xsj. If j˛j � 2 or jˇj � 1 then the estimate
follows directly from (7-15). �
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