2023 REAL FORMS OF SOME GIZATULLIN SURFACES AND KORAS–RUSSELL THREEFOLDS
Jérémy Blanc, Anna Bot, Pierre-Marie Poloni
Author Affiliations +
Publ. Mat. 67(2): 851-890 (2023). DOI: 10.5565/PUBLMAT6722314

Abstract

We describe the real forms of Gizatullin surfaces of the form xy=p(z) and of Koras–Russell threefolds of the first kind. The former admit zero, two, three, four, or six isomorphism classes of real forms, depending on the degree and the symmetries of the polynomial p. The latter, which are threefolds given by an equation of the form xdy+zk+x+t=0, all admit exactly one real form up to isomorphism.

Citation

Download Citation

Jérémy Blanc. Anna Bot. Pierre-Marie Poloni. "REAL FORMS OF SOME GIZATULLIN SURFACES AND KORAS–RUSSELL THREEFOLDS." Publ. Mat. 67 (2) 851 - 890, 2023. https://doi.org/10.5565/PUBLMAT6722314

Information

Received: 16 September 2021; Revised: 13 May 2022; Published: 2023
First available in Project Euclid: 29 June 2023

MathSciNet: MR4609022
zbMATH: 07720481
Digital Object Identifier: 10.5565/PUBLMAT6722314

Subjects:
Primary: 14J26 , 14J50 , 14P05 , 14P99 , 14R05 , 14R20 , 20J06

Keywords: Danielewski surfaces , Gizatullin surfaces , Group cohomology , Koras–Russell threefolds , real forms

Rights: Copyright © 2023 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
40 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.67 • No. 2 • 2023
Back to Top