2023 ON GENERIC FLAG VARIETIES FOR ODD SPIN GROUPS
Nikita A. Karpenko
Author Affiliations +
Publ. Mat. 67(2): 743-756 (2023). DOI: 10.5565/PUBLMAT6722310

Abstract

For the spin group G=Spin2n+1 with arbitrary n, a generic G-torsor E over a field, and a parabolic subgroup PG, we consider the generic flag variety E/P and describe its Chow ring modulo torsion. This description determines the index of E/P, completing results of [3], where the index has been determined for most P.

Citation

Download Citation

Nikita A. Karpenko. "ON GENERIC FLAG VARIETIES FOR ODD SPIN GROUPS." Publ. Mat. 67 (2) 743 - 756, 2023. https://doi.org/10.5565/PUBLMAT6722310

Information

Received: 28 May 2021; Revised: 10 January 2022; Published: 2023
First available in Project Euclid: 29 June 2023

MathSciNet: MR4609018
zbMATH: 07720477
Digital Object Identifier: 10.5565/PUBLMAT6722310

Subjects:
Primary: 14C25 , 20G15

Keywords: algebraic groups , Chow groups , classifying spaces , quadratic forms over fields , spin groups , torsors

Rights: Copyright © 2023 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.67 • No. 2 • 2023
Back to Top