2023 DYADIC LOWER LITTLE BMO ESTIMATES
K. Domelevo, S. Kakaroumpas, S. Petermichl, O. Soler i Gibert
Author Affiliations +
Publ. Mat. 67(2): 661-685 (2023). DOI: 10.5565/PUBLMAT6722307

Abstract

We characterize dyadic little BMO via the boundedness of the tensor commutator with a single well-chosen dyadic shift. It is shown that several proof strategies work for this problem, both in the unweighted case and with Bloom weights. Moreover, we address the flexibility of one of our methods.

Citation

Download Citation

K. Domelevo. S. Kakaroumpas. S. Petermichl. O. Soler i Gibert. "DYADIC LOWER LITTLE BMO ESTIMATES." Publ. Mat. 67 (2) 661 - 685, 2023. https://doi.org/10.5565/PUBLMAT6722307

Information

Received: 6 May 2021; Revised: 23 February 2022; Published: 2023
First available in Project Euclid: 29 June 2023

MathSciNet: MR4609015
zbMATH: 07720474
Digital Object Identifier: 10.5565/PUBLMAT6722307

Subjects:
Primary: 42B35
Secondary: 42B20

Keywords: dyadic operators , little BMO , norm estimates for commutators

Rights: Copyright © 2023 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.67 • No. 2 • 2023
Back to Top