2022 Reverse Faber–Krahn inequality for a truncated Laplacian operator
Enea Parini, Julio D. Rossi, Ariel Salort
Author Affiliations +
Publ. Mat. 66(2): 441-455 (2022). DOI: 10.5565/PUBLMAT6622201

Abstract

In this paper we prove a reverse Faber–Krahn inequality for the principal eigenvalue μ1(Ω) of the fully nonlinear eigenvalue problem

{λN(D2u)=μuinΩ,u=0onΩ.

Here λN(D2u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain ΩN, the inequality

μ1(Ω)π2[diam(Ω)]2=μ1(Bdiam(Ω)/2),

where diam(Ω) is the diameter of Ω, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint.

Furthermore, we discuss the minimization of μ1(Ω) under different kinds of constraints.

Citation

Download Citation

Enea Parini. Julio D. Rossi. Ariel Salort. "Reverse Faber–Krahn inequality for a truncated Laplacian operator." Publ. Mat. 66 (2) 441 - 455, 2022. https://doi.org/10.5565/PUBLMAT6622201

Information

Received: 13 October 2020; Accepted: 27 March 2020; Published: 2022
First available in Project Euclid: 22 June 2022

MathSciNet: MR4443746
zbMATH: 1500.35147
Digital Object Identifier: 10.5565/PUBLMAT6622201

Subjects:
Primary: 35J60 , 35P30
Secondary: 35J70 , 35J75 , 35P15 , 49Q10

Keywords: reverse Faber–Krahn inequality , spectral optimization , truncated Laplacian

Rights: Copyright © 2022 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.66 • No. 2 • 2022
Back to Top