2022 Multiple vector-valued, mixed-norm estimates for Littlewood–Paley square functions
Cristina Benea, Camil Muscalu
Author Affiliations +
Publ. Mat. 66(2): 631-681 (2022). DOI: 10.5565/PUBLMAT6622205

Abstract

We prove that for any LQ-valued Schwartz function f defined on d, one has the multiple vector-valued, mixed-norm estimate

fLP(LQ)SfLP(LQ)

valid for every d-tuple P and every n-tuple Q satisfying 0<P,Q< componentwise. Here S:=Sd1SdN is a tensor product of several Littlewood–Paley square functions Sdj defined on arbitrary Euclidean spaces dj for 1jN, with the property that d1++dN=d. This answers a question that came up implicitly in our recent works [2], [3], [5] and completes in a natural way classical results of Littlewood–Paley theory. The proof is based on the helicoidal method introduced by the authors in the aforementioned papers.

Citation

Download Citation

Cristina Benea. Camil Muscalu. "Multiple vector-valued, mixed-norm estimates for Littlewood–Paley square functions." Publ. Mat. 66 (2) 631 - 681, 2022. https://doi.org/10.5565/PUBLMAT6622205

Information

Received: 8 November 2021; Accepted: 20 July 2020; Published: 2022
First available in Project Euclid: 22 June 2022

MathSciNet: MR4443750
zbMATH: 1504.42032
Digital Object Identifier: 10.5565/PUBLMAT6622205

Subjects:
Primary: 42B20

Keywords: mixed-norm estimates , multi-parameter Hardy spaces , multi-parameter Littlewood–Paley theory , weighted estimates and Littlewood–Paley theory

Rights: Copyright © 2022 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.66 • No. 2 • 2022
Back to Top