2022 A simple proof of the optimal power in Liouville theorems
Salvador Villegas
Author Affiliations +
Publ. Mat. 66(2): 883-892 (2022). DOI: 10.5565/PUBLMAT6622212

Abstract

Consider the equation div(φ2σ)=0 in N, where φ>0. It is well known [4, 2] that if there exists C>0 such that BR(φσ)2dxCR2 for every R1, then σ is necessarily constant. In this paper we present a simple proof that this result is not true if we replace R2 with Rk for k>2 in any dimension N. This question is related to a conjecture by De Giorgi [7].

Funding Statement

The author has been supported by Ministerio de Ciencia, Innovación y Universidades of Spain PGC2018-096422-B-I00 and by Junta de Andalucía A-FQM-187-UGR18 and P18-FR-667.

Citation

Download Citation

Salvador Villegas. "A simple proof of the optimal power in Liouville theorems." Publ. Mat. 66 (2) 883 - 892, 2022. https://doi.org/10.5565/PUBLMAT6622212

Information

Received: 25 February 2021; Accepted: 9 October 2020; Published: 2022
First available in Project Euclid: 22 June 2022

MathSciNet: MR4443757
zbMATH: 07556785
Digital Object Identifier: 10.5565/PUBLMAT6622212

Subjects:
Primary: 35B08 , 35B35 , 35J91

Keywords: Allen–Cahn equation , Dirichlet and potential energies , Liouville theorems

Rights: Copyright © 2022 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.66 • No. 2 • 2022
Back to Top