Translator Disclaimer
2022 A small closed convex projective 4-manifold via Dehn filling
Gye-Seon Lee, Ludovic Marquis, Stefano Riolo
Author Affiliations +
Publ. Mat. 66(1): 369-403 (2022). DOI: 10.5565/PUBLMAT6612215

Abstract

In order to obtain a closed orientable convex projective 4-manifold with small positive Euler characteristic, we build an explicit example of convex projective Dehn filling of a cusped hyperbolic 4-manifold through a continuous path of projective cone-manifolds.

Citation

Download Citation

Gye-Seon Lee. Ludovic Marquis. Stefano Riolo. "A small closed convex projective 4-manifold via Dehn filling." Publ. Mat. 66 (1) 369 - 403, 2022. https://doi.org/10.5565/PUBLMAT6612215

Information

Received: 17 June 2020; Accepted: 6 April 2021; Published: 2022
First available in Project Euclid: 4 January 2022

Digital Object Identifier: 10.5565/PUBLMAT6612215

Subjects:
Primary: 22E40 , 53A20 , 53C15 , 57M50 , 57N16 , 57S30

Keywords: cone-manifold , Dehn filling , Euler characteristic , Hilbert geometry , hyperbolic 4-manifold , real projective structure

Rights: Copyright © 2022 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
35 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.66 • No. 1 • 2022
Back to Top