Translator Disclaimer
2020 Finite $C^0$-determinacy of real analytic map germs with isolated instability
J. A. Moya-Pérez, J. J. Nuño-Ballesteros
Publ. Mat. 64(2): 563-575 (2020). DOI: 10.5565/PUBLMAT6422008

Abstract

Let $f\colon(\mathbb R^n,0)\to(\mathbb R^p,0)$ be a real analytic map germ with isolated instability. We prove that if $n=2$ and $p=2,3$, then $f$ is finitely $C^0$-determined. This result can be seen as a weaker real counterpart of Mather-Gaffney finite determinacy criterion.

Citation

Download Citation

J. A. Moya-Pérez. J. J. Nuño-Ballesteros. "Finite $C^0$-determinacy of real analytic map germs with isolated instability." Publ. Mat. 64 (2) 563 - 575, 2020. https://doi.org/10.5565/PUBLMAT6422008

Information

Received: 4 March 2019; Revised: 28 October 2019; Published: 2020
First available in Project Euclid: 3 July 2020

zbMATH: 07236054
MathSciNet: MR4119262
Digital Object Identifier: 10.5565/PUBLMAT6422008

Subjects:
Primary: 58K15
Secondary: 58K40 , 58K65

Keywords: finite determinacy , Łojasiewicz inequality , topological classification

Rights: Copyright © 2020 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.64 • No. 2 • 2020
Back to Top