Translator Disclaimer
2020 Ergodic properties of Markov semigroups in von Neumann algebras
Katarzyna Kielanowicz, Andrzej Łuczak
Publ. Mat. 64(1): 283-331 (2020). DOI: 10.5565/PUBLMAT6412012

Abstract

We investigate ergodic properties of Markov semigroups in von Neumann algebras with the help of the notion of constrictor, which expresses the idea of closeness of the orbits of the semigroup to some set, as well as the notion of ‘generalised averages’, which generalises to arbitrary abelian semigroups the classical notions of Cesàro, Borel, or Abel means. In particular, mean ergodicity, asymptotic stability, and structure properties of the fixed-point space are analysed in some detail.

Citation

Download Citation

Katarzyna Kielanowicz. Andrzej Łuczak. "Ergodic properties of Markov semigroups in von Neumann algebras." Publ. Mat. 64 (1) 283 - 331, 2020. https://doi.org/10.5565/PUBLMAT6412012

Information

Received: 3 May 2018; Revised: 29 July 2019; Published: 2020
First available in Project Euclid: 3 January 2020

zbMATH: 07173906
MathSciNet: MR4047566
Digital Object Identifier: 10.5565/PUBLMAT6412012

Subjects:
Primary: 46L55
Secondary: 47A35

Rights: Copyright © 2020 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
49 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.64 • No. 1 • 2020
Back to Top