Open Access
2017 Right Engel elements of stability groups of general series in vector spaces
B. A. F. Wehrfritz
Publ. Mat. 61(1): 283-289 (2017). DOI: 10.5565/PUBLMAT_61117_11

Abstract

Let $V$ be an arbitrary vector space over some division ring $D$, $\mathbf{L}$ a general series of subspaces of $V$ covering all of $V\backslash \{0\}$ and $S$ the full stability subgroup of $\mathbf{L}$ in $\operatorname{GL}(V)$. We prove that always the set of bounded right Engel elements of $S$ is equal to the $\omega$-th term of the upper central series of $S$ and that the set of right Engel elements of $S$ is frequently equal to the hypercentre of $S$.

Citation

Download Citation

B. A. F. Wehrfritz. "Right Engel elements of stability groups of general series in vector spaces." Publ. Mat. 61 (1) 283 - 289, 2017. https://doi.org/10.5565/PUBLMAT_61117_11

Information

Received: 27 August 2015; Published: 2017
First available in Project Euclid: 22 December 2016

zbMATH: 06697034
MathSciNet: MR3590123
Digital Object Identifier: 10.5565/PUBLMAT_61117_11

Subjects:
Primary: 20F19 , 20F45 , 20H25

Keywords: Engel elements , linear groups , stability groups

Rights: Copyright © 2017 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.61 • No. 1 • 2017
Back to Top