Open Access
2011 Conical square functions and non-tangential maximal functions with respect to the gaussian measure
Jan Maas, Jan van Neerven, Pierre Portal
Publ. Mat. 55(2): 313-341 (2011).

Abstract

We study, in $L^{1}({\mathbb R}^n;\gamma)$ with respect to the gaussian measure, non-tangential maximal functions and conical square functions associated with the Ornstein-Uhlenbeck operator by developing a set of techniques which allow us, to some extent, to compensate for the non-doubling character of the gaussian measure. The main result asserts that conical square functions can be controlled in $L^1$-norm by non-tangential maximal functions. Along the way we prove a change of aperture result for the latter. This complements recent results on gaussian Hardy spaces due to Mauceri and Meda.

Citation

Download Citation

Jan Maas. Jan van Neerven. Pierre Portal. "Conical square functions and non-tangential maximal functions with respect to the gaussian measure." Publ. Mat. 55 (2) 313 - 341, 2011.

Information

Published: 2011
First available in Project Euclid: 22 June 2011

zbMATH: 1226.42013
MathSciNet: MR2839445

Subjects:
Primary: 42B25
Secondary: 42B30 , 60J35

Keywords: Gaussian measure , Hardy spaces , maximal function , Ornstein-Uhlenbeck operator , square function

Rights: Copyright © 2011 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.55 • No. 2 • 2011
Back to Top