Open Access
2010 $f$-Polynomials, $h$-Polynomials, and $l^2$-Euler Characteristics
Dan Boros
Publ. Mat. 54(1): 73-81 (2010).


We introduce a many-variable version of the $f$-polynomial and $h$-polynomial associated to a finite simplicial complex. In this context the $h$-polynomial is actually a rational function. We establish connections with the $l^2$-Euler characteristic of right-angled buildings. When $L$ is a triangulation of a sphere we obtain a new formula for the $l^2$-Euler characteristic.


Download Citation

Dan Boros. "$f$-Polynomials, $h$-Polynomials, and $l^2$-Euler Characteristics." Publ. Mat. 54 (1) 73 - 81, 2010.


Published: 2010
First available in Project Euclid: 8 January 2010

zbMATH: 1207.57033
MathSciNet: MR2603589

Primary: 20F55 , 52B11 , 57M15

Keywords: $h$-polynomial , $l^2$-Euler characteristic

Rights: Copyright © 2010 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.54 • No. 1 • 2010
Back to Top