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27. Localization Theorem in Hyperbolic Mixed Problems

By Mutsuhide MATSUMURA
Faculty of Engineering, Kyoto University

(Comm. by Kinjir5 KUNU(I, M.J..., Jan. 12, 1971)

Introduction. Recently Atiyah, Bott and Grding [1] have studied
some interesting properties (behavior near the wave fronts, supports,
singular supports and lacunas, etc.) and structures o undamental
solutions of hyperbolic differential operators with constant coefficients.
It seems that some of their methods can be applicable to the study of
Riemann or Green’s functions (kernels) or hyperbolic mixed problems
in a quarter-space. The properties of such Riemann unctions are less
investigated. For example there are Deakin [2], Duff [3] Hersh [4],
etc. In this note we present one of properties which can be easily
proved, more precisely "localization theorem" corresponding to one in
the free space-time case. The idea of localizing fundamental solutions
is due to HSrmander [6].

1. Riemann or Green’s functions. Let R denote the n-dimen-
sional euclidean space and its complex dual space, we shall write
x’= (x, ..., x_), x"= (x, ..., x) or the coordinate x= (x, ..., x) in
R and $’=($, ...,$_), "=($, ...,) for the dual coordinate
=($, ..., ). The variable x will play the role o "time", the vari-
ables x, ..., x will play the role of "space". We shall also denote by
R the half-space {x=(x’, x) e R, x0}. For differentiation we will
use the symbol D-- 1/i. 3 / 3x.

Let P=P() be a hyperbolic polynomial of n variables with
respect to 8=(1, 0, ., 0) e Re in the sense o Grding, i.e. P,(9) g= 0
and P( + t9):/: 0 when $ is real and Im t is less than some fixed number
where P denotes the principal part o P. We consider the following
mixed initial-boundary value problem for the hyperbolic operator P(D)
in a quarter-space
( 1 ) P(D)u(x)--f(x), x R_, xl 0,
(2) (Du)(O,x")--O, k=0,1,...,m-1, xn0,
(3) B(D)u(x) --0, ]= l, ,1, x >O.
Here B(D) are boundary operators with order m. The number o
boundary conditions will be determined later on.

We assume that the coefficients of in P() and in B() are
different from zero, i.e. that the hyperplane xn--O is non-characteristic
for P(D) and B(D). We shall construct the Riemann unction G(x, y)
which describes the propagation of waves produced by a unit impulse
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given at position y= (0, Y2, "’’, Yn) e R. and at time x=0 in a medium
whose states are governed by (1)-(3). Let Re A be the real hyper-
surface {$ e Re ,P()-0}. If we denote by F=F(A, O) the com-
ponent o Re --Re A which contains 8, F is an open convex cone.
The dual cone K=K(A, 9)-{x e R; x.0, e F} is called the propa-
gation cone. As is well known, a hyperbolic operator P(D) has a
fundamental solution E(x) satisfying P(D)E(x)-(x) and having sup-
port in the propagation cone K. The undamental solution is defined
as an inverse Fourier-Laplace transform of P- in the form.

( 4 ) E(x) (2)- e’(+)P(+i)- d,JRe

where e sS--F with s large enough and 8-(1, 0, ..., 0).
Let y=(O,y,...,y) be a point of R. Then the fundamental

solution E(x-y) describes the incident or primary propagation of
waves due to a point source (x’- y"). The distribution which describes
the propagation of secondary waves reflected from a plane boundary

x=O subject to the boundary conditions B(D) is given as a solution
of the problem"
(5) P(D)F(x, y)=O, x e R, x
( 6 ) (DF)(O, x", y)=0, k= 0, 1, m-- 1, x=(0, x") e R+,
( 7 B(D)F(x, y) =B(D)E(x--y) ]-- 1, ..., 1.

0 0

Then G(x, y)=E(x-y)-F(x, y) satisfies the equations P(D)G(x, y)
=(x--y), x e R, x>O andB(D)G(x, y) -0, ]=1, ..., 1. Hence one

may consider G(x, y) as Riemann function or the hyperbolic mixed
problem (1)-(3). In order to construct F(x, y) we start by formal
discussions. From (4) we have

--,[BCD)E(x--y) ]-(2)-:e-(+ B(+i)
:o P($+iv)

where $ e Re and e-sO-F with s large enough. Taking thus
ormally partial Fourier-Laplace transforms in (5) and (7) with respect
to x’=(x,..., x_), we obtain a boundary value problem for ordinary

differential equation with parameters"
( s ) P(’+ iv’, D)f(’+ iV’, Xn, y)-O, x>0,

B(’+ iV’, D)(’+@’, x, y)
m0

(9) (2)_+e_v(+,)-- B(+i) d$..
J_ p(+ iv)

2. Algebraic considerations. In order to give an explicit repre-
sentation of temperate solutions of this problem, it is necessary to
study the roots of the algebraic equation in with parameters

’" P(’, )=0. First we note
Lemma ([1], p. 132). By the hyperbolicity of P, there exists a
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non-negative number So such that P($+sO):/:O when is real and
Irn s[So. Then we have
(10) P($ + t + s3) #: 0
when is real, ? e F, Imt<0 and Ims--s0(resp. Imt>0 and
Im SSo). For P, we have P($+t?+s9)O when is real, 2 e F,
Im t< 0 and Im s0 (resp. Im t >/0 and Ims0).

From (10) it follows that the roots of P(’, )--0 are never real
when ’ e Re ---is9’-iF0 (resp. Re -+is9’ + iFo) with s large
enough where /’0--(7; (r]’,0)e F}. Since the roots of P(’,)--0 are
(multivalued) continuous as unctions of $’(note P(0,1)0), this
implies that the number of roots with positive imaginary part, counted
according to multiplicity, is constant when ’ e Re ,g--is3’-iF0
(resp. Re-+isO’+ iFo). This number determines the number of
boundary conditions required in the general theory of hyperbolic mixed
problems. When ’ e Re --isO’-iFo, we denote by (’), k--l,
., l( (’), k l+ 1, ., m) the roots of P($’, )--0 with positive

(negative) imaginary part and set

P+ P+ ($’, 2) P(O, 1) ]-[ (2-- 2(’)).

Since the coefficients of the polynomial P+ in 2 are elementary sym-
metric functions of 2(’), ., 2($’), they are analytic functions of ’ in
Re ---isO’--iFo as is well known in analytic function theory.) We
shall also denote by/(’) k= 1, ..., m the roots of P(’,/)=0. Since
t-P(t’, tl)oP(’, l) as t-.c it follows that, with suitable labelling,
(11) t-2(t$’)-+/a($’), to= 1, ..., m as t-+oo.
By the preceding lemma, the number of the roots of P(’,/a)=0 with
positive (resp. negative) imaginary part, is constant when
--iFo. By the relation (11) this number is equal to /(resp. m-l),
moreover

Im/(’)0, k=l,...,1 and Im/(’) 0, k=/+l,...,m.
Let D(P/)($’) and D(P+)($’) denote the discriminants of P/($’, 2)=0 in
2 and P+(’,/)-P(0,1)I-[_(/-/($’))-0 in / respectively. Then
D(P/)($’) can be continuously extended to Re $n---i(Fo [J {0}). We now
define Lopatinski determinant for the system {P, B} by

R(’) R(P/ B, ..., B) det (B($’, 2(’))) / l-[ (2(’) 2(’)).

Likewise, Lopatinski determinant for {P, B} is defined by
R($’)-R(P+,B, B)--det (B($,/(’)))/I-[ (/(’)--/(’)).

where B(D) denotes the principal part of B(D) for each ]. Since
det (B(’, 2))/> (2--2) is a symmetric function of the variables
2, ..., 2 with polynomial coefficients of ’,R($’)can be expressed as

1) For example., see the proof of Weierstrass preparation theorem in Goursat’s
book" Cours d’Analyse Mathematique. II.
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a polynomial (with poly. coeff, of $’) in the coefficient of P/($’, ).2)
Hence R($’)is an analytic function of $’ in Re ---is3’--iFo(s>Sl).
By the same reason R($’) is an analytic function of ’ in Re --iFo
and extended continuously to Re,,--i(FoU{0}). From now on we
shall assume the Lopatinski condition"
(12) R(’) :/: 0 when ’ Re n-_is9’-- iFo with s large enough. 3)

Further we assume R($’) :/:0 when 0:/: $’ e {$’; e Re A}. Let R(x,
=R(P+, B, ., B_ e-, B+, ., B) be the determinant obtained by
replacing in R(P+ B, ., B) ]-row with the vector (e’(’), e(’)),
when D(P+)(’):/:0 and by continuity otherwise (cf. HSrmander [5]).

:}. Reflected Riemann functions for {P,B}. Localization.
Under the preliminaries in the preceding section, a unique tern-

perate solution of (8)-(9) for each $’e Re- and 7 e--s3--F with
s large enough, has the representation

I($’ + i’, X y)--(27) -1 --1 Rj(xn, ’ -i]’) +e_iy(+i) Bj(- i) dn.-R-(’ iv’) P($ + iv)
Thus we have formally

F(x, y)-- (27)
o- R(’+ i’)

(13)

P($ + iv)
where $ is real and ] e -s3-F with s large enough and (], 0) e F. If

m m, (13) can be interpreted in the distribution sense with respect to x.
However, in order to establish our localization theorem, F(x,y) has to be
interpreted in the sense of distribution with respect to (x, y) e R R as

(F(x, y), (x )(Xn)(R)g(Y )h(Yn)}

(14)

te_(,+) B(+i)h(yn)d$dyt d’dxdy’,
P( / i)

where , g C:(Rn-), e C(R+) and h e C(R+). We now define by
(14) the secondary or reflected Riemann kernel for the system (P, B}.

According to Atiyah-Bott-Grding [1], we introduce the notion of
localization of polynomials

Definition. Let P($) be a polynomial of degree mO and develop
tP(t-+) in ascending power of t

tP(t-’ +)=t,P() + O(t+ 1),

2) Let f(l,.’.,) be a symmetric polynomial of (21,...,). Then f can be
represented as a polynomial of elementary symmetric unctions and the coefficients
are linear unctions (with integer coefficients) in the coefficients of f.

3) In order to establish our localization theorem, it is sufficient to assume
that R(’):/:0 when ’e Re--is O’ with s large enough. But the assumption
(12) will be necessary for the study of supports of reflected Riemann functions.
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where P() is the first coefficient that does not vanish identically in. The number p-m(P) is called the multiplicity of relative to P,
the polynomial -P(), the localization of P at .

I P():/:0, then P()-P() is a non-zero constant. When P is
hyperbolic, we are interested in localizations at real points $ such that
P()-0. When e ReA and D(P+)($’)O, we call regular point
of Re A. Denote by A(’) the determinant (B(’, (’))) and by A(’)
its (], k)-cofactor. We set with small positive

a(’)-- i z p(,, z) P_ (,, z)

3P z)P (’, z)} /{P(’, z)}dz
3z

and define the localizations o F(x, y) at a regular point by

F,,(x, y)- (2=)
A($’)

e(x,_,+x,(,).(,+, e d d’,- P,(5 +
if (’) is real, (l<k/) and F(x,y)-O otherwise. Then we have

Localization theorem. Let be a regular point of ReA and
p-m(P) the multiplicity of relative to P. Then if (’) is real,

in the sense of distribution with respect to (x, y)e R R and
$0@supp (,)F,csing supp

Moreover
supp (,v)F.c{(x, y) e RR y=(0, y, ..., y),

[x’--y’ +x grad g(’)]" V’--YV0, V e F},
where F-F(A, 8) and Re A={ e Re Z, P()-0}.

The detailed proo will be given in a orthcoming paper.
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