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155. On Some Integral Equations with
Normal Integral Operators

By Sakuji INoUE
Faculty of Science, Kumamoto University

(Comm. by Kinjird KUNUGI, M.J.A., Oct. 12, 1967)

In the present paper we deal with the construction and the
function theoretical properties of solutions of some integral equations
with normal integral operators.

Definitions of notations. Let 4 be a Lebesgue p-measurable set
of finite or infinite measure in m-dimensional real Euclidean space
R,; let L,(4, p) be the Lebesgue functionspace; let {o,(x)},~1,5.5,... and
{¥u(®)}4=1,2.5,... b€ both incomplete orthonormal systems such that the
union of them forms a complete orthonormal system in L,(4, p); let
((B:;)) be the bounded normal operator in the Hilbert coordinate space
l, corresponding to an infinite bounded normal matrix (8;;) with

f]lﬁ’u =B *>0 (¢=1,2,8,---); let (BH)=((B:)) (p=1,2,3,

-, m) where By =28;; (¢,5=1,2,3, -+ +); let {1},=1,5.5,... be any infinite
bounded sequence of complex scalars; and let N, be integral operators
defined by
Ni(e) =332 e dow)- o+ 3| k)T @) S8}

(p=1 2 3 AN ([ h(x)eL2(Ay ‘0)),
where ¢ is an arbitrarily given complex constant. Then, as we
discussed before [1], N, is a bounded normal operator in L,(4, p) and
N,=N?.

Theorem 1. Let g(x) be any given function in Ly (4, p) such
that it comsists of all of ¢,(x), ¥.(x); let {,(p=1,2,8, ---,n) be the
roots of the equation 2”+n2a,,2”"’=0 with complex coefficients a,;

p=1
let {1} be everywhere dense on an ;)pen or a closed rectifiable Jordan
curve; let sup |21, |>| c]{.z | Bis 12} < oo; and let o =max{|{,|-sup|a,|}.
v 4,J=1 P v
Then the integral equation
1) l"f(w)+2a N, f(e)=9(x)  (0<]2|<0o0)
has a uniquely detw'mmed solutwn

@)  filw)= EC»H(X o) pu(@) +

{g(x) ECysoy(w)
+ g;-,;xk(cl, Gy ey LS, “/fu)ZB""n,lf,(x)}eL(A o),
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where ¢,=(g, )= S g(fb)%(x)dp(x) and K8y, Gy + o0y C) =205, 12185

eeoly for i< <1 and —+ j + - %=lc. Moreover, if we set

1) =(f1, k) for an arbztmmly given h(x) e L4, p) such that it con-
ststs of all of ¢, (x) and ¥.(z), M("‘)=021[3X]|X("'3w)| (0<r<o), and
0,27

m(r, co)= 2];1_ S:z lgg | x(re=i*)| dt (0<r< o),

and denote by I' a rectifiable closed Jordan curve containing the
disc |2|<0 inside itself, then the function ¥(2) enjoys the following
properties:

1 x(2) (it
B o |G |

where the complex line integral along I" is taken counterclockwise;
B) ME)=Mr) for o<r<r' <oo and M(r)—oo as r—a;

© 5. e at=F ) F<oo

V5 s MO S5 ) [<oo,

0 (for every z inside I')
(for every z outside I'),

where

a,(r)= %’— S?X(”’e“) cos vt dit (0<r<<xo);

. 1 b4 S
D) if we put T(r)zgg log V1+|g(re ) Fdt (0<r<oo),
0
then T(r) is not only a monotone decreasing function of r but also
a convex fumction of log r;

(E) 1if, for any large positive number G, there exist a positive
constant pg in a bounded open inmterval (o,l) (6<l<co) and a set
Agpey, With positive measure mg, of angles 6 such that the in-
equality | y(0ge~*%)|>G holds for every 0 € Ag,q and that inf mg>0,

G
then, for umcountably many complex numbers {c,} chosen suitably,
x(2) has a denumerably infinite number of c,~points by (=1, 2, 3,
«++), repeated according to the respective orders, in the domain
D2: 0<|2|<oo} such that any accumulation point of them lies on
the circle | 2| =0 and that the positive series 2(|b‘°w’ |—0) s divergent;

@) iof {Lde=r.2.80.,; are all distinct 'roots of 2”—I—Ea A" ?=0 and
the order of (. is denoted by m,, then

m(r, oo (mn+1)
rl—lm+0 log [(r—o0)™] E

Proof. It is verified at once that the given integral equation
(1) is rewritten in the form J[(AI—{,N,)-f(x)=g(x) and moreover

p=1

Sm,=mn).

k=1
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that ||N ||=max {suplz I, Tel BN} [1]. On the other hand,

since Z | Bi; [2<oo by hypothesis, we have for any a=(a,, a,, &,
cyel”

(B |]=

.1’81.1
gg{ila 53 B = 33 | Byl <0

and hence| | ((8:,)) | <{ E | Bi; 12} This last inequality and the hypoth-
eses on supll | and o lead us to the result that the solution of(1)

is given by
fi@=| fl0-CadK@e@  (@<|2]<oo)
{z: mssuplz 1} p=1
—Selie-tarte@+| 00 dK@ew),

where ¢,=(g, go,,) and {K(z)} denotes the complex spectral family of
N,. In addition,

I | RN
:S(z Izl Ssupl 2, 1)=(,) 1];* }1{%( Lt > }dK(z)g(x)

prd 1 e s e
- A" S(z:lzlSsgpli,l)—(l,,){l E—xk(Cn < ! Cn)z"}dK(z)g(w)

=—{o@- gcvsoy(x)wugz—,,xk(cl, Lo oo, LIS, OSIBE ¥, @),

where £,({, &, -+, ,) denotes the sum > ... ,-,{;{; -+ under the

conditions 1<j<..-<l and i,+i,+---—|—%=k. Hence we have the
7 J

desired solution (2) holding for almost every x€ 4. Furthermore,
if we denote the subspaces determined by {¢,} and {v.} by I and
N respectively and set g=g,+9g, where g, ¢ M and g, N, then

ﬁ(l—cplu)”l%(x) ré(lil—a)*“ll alf  (o<|1]<oo)

and

| 116,27 dK@o(@)|[=( 21-0)> | g

’ {z: Izlssuplx 11={2,} p=1
(o< 2|<00).
Consequently the right-hand side of (2) is of course an element of
L4, p).

We next consider the function y(2)=(f3, h)-<H(ZI N g, )
(0<|2]|< o) defined in the statements of the present theorem. If
we denote by 4, the continuous spectrum of N,, then every point
of the sets {{,2 }p—12 ,. and {{,4.},=12..... is a singularity of

1,2,8,
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(ﬁ(ZI——C,,Nl)“lg, h> for the domain {2: | 2|<oo} but this function is
p=1
regular elsewhere. Now, we have
J— —1
=], . 1=t dK@o, )
and here H(z ¢,2)"" is decomposed by partial fractions. In addition,
the ordlnary part of x(2) is zero. Accordingly we can establish (A)

by the same reasoning as that used to prove Theorem 30 in my
previous paper [2] and can derive the expansion

)-S5

(a,(r)z%gzﬂx(re“) cosvtdt, o<r<oo, O</c<1>

from the same method as that applied to prove Theorem 36 in the
same paper. By making use of this expansion, we can also establish
(B) and (C), as will be found from the method of the proof of
Theorem 43 in [3]. Furthermore (D) and (E) are shown by reason-
ings exactly like those applied to prove Theorem 48 in [47] and to prove
Theorem 55 in [5], respectively.

Lastly we shall turn to the proof of (F).

By the definition of m, we can write

fz(x)zpljl(ll— N 'g() (6<| 2] <o)
- S(z ]zlgsupu ]),gaz__14(a)(z)('2 CKZ)‘“dK(z)g(x),

where any A{*(z) is a rational function of z such that | A{*(z)|<co
for |z|< sup|4,|. On the other hand, if we put

K=max{ sup |A“(2)]|}

a5 lﬂémspll,,l
then
’ (S(z:lzlésupll I}Aia)(le_CKz)_adK(z)g, h> {éK(’r—ox)""‘ H g ” H h H

(A=re®, o,=[{.|sup |2, |So<r<oo),
so that

+ .
log | x(re™*) |

Ly

I (f're“‘”’ h) I
10g [K(r—a)= gl ||k ]|]+]1og n

£
Il
-

A TIA
Mo il 2
HM§

x:l—w;"ﬂbg [(r—0)~]+nlog [K |||l || k]| +1og n.

This final inequality permits us to conclude that
m(r, oo) <2m (m,c—l—l)
r-a+0 log [(r—0)™] 2
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as we wished to prove.
Theorem 2. Let all the motations defined in the statements

sup | 4, |
of Theorem 1 be again wused here, and let ¢'=—~2———<oo, Then

min{|C, [}
the integral equation
®) (NeAZa,rN,,)f@)=g@) (@20, Ne=I, 0'<|2|<e)

has a uniquely determined solution

@ F@=pSefl(1-3) e+

n

11” {g(x) _yZ:c”(P"(x) +,§:%xk(crl’ C;I: 0y C;1)0k2(99 "##)Ele(k)"/fj(x)}
If we set
TD=(F ), Br)= max | 7re?)|, a,(r)=— | Are") cos vt dt,
g€[o0,27] T Jo
and
~ 1 (™. * = ;
ii(r, o)== "log | X(re=)| at
27 Jo
for any r with o' <r<oco, then the fresuNZts exactly analogous to (A),
(B), (C), (D), (E), and (F) hold for ¥(x), M(r), @(r), W(r, ), and 0’;

moreover if we denote by I" a rectifiable closed Jordan curve contain-
ing the disc | 2|<max{o, o'} inside itself, then

®) i =2{L | eronoa-t

(max{g, 0"} <| 2| <o0),
where I" is positively oriented.
Proof. Since, by the hypothesis on {,, the roots of the equa-

tion 1+Ea »=0 are given by ;% (p=1, 2, 8, - -+, m), it is easily verified
that the given integral equation (3) is rewritten a,,H( — -—1> fx) = g(x)
P

and hence that (4) is the unique solution of (3). It is also clear that
the results exactly analogous to (A), (B), (C), (D), (E), and (F) are
valid for ¥(2), M(r), &(r), #(r, o), and ¢’. Suppose that I" lies
inside the circle C{Z: |ll=—:—} with max{c, 0'}<r<oco and 0<k<1l

and that C is positively oriented. Then, by Cauchy’s theorem, we have
L {0 eooyi)de=1"(Le0)"'s S
oo erorde =L (Ze) "SS5 ) - S L ) 40
=r"Ha,(M@,(r)+ ax (1), (1) + -+« +a,(r)A(r)},
because of the fact that the expansions of x(ﬁe"’) and X( e"’)
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both are uniformly convergent with respect to 6. Since, on the
other hand,

D =Sam(1) Fam(L)  (1=Le)
= a0+ ar)a, )+ -+ +amami(5)

we have the desired relation (5).

Remark 1. 1 _ S X(C)X(O dz=0 (s=0,1,2,8,...).
2m C’

Remark 2. Q)= 2{ S C'"IX(C)dC} (0'<|2|<o0).
Remark 3. The same result as that of Theorem 46 in [6] holds

for the distribution of ¢’-points of (1) in the domain {1: 0<| 2| < oo},
provided that o is defined as in the statements of Theorem 1.
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