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(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1962)

§1. When a sequence {s,} is given we define the method [ as
follows: If

(1) ty=8,, t, =81,
1 < s ) >
b=t St 4. S >9
" logm St 2 o n+1 (n=2)

tend to a finite limit s as n—oco, we say that {s,} is summable ()
to s and write lims,=s(l). (See [3], p.59, p.87.)
On the other hand we define the method L as follows: If
-1 = Sn n+1
(2) log 1—x)»=0 n+1 v
tends to a finite limit s as x—1 in the open interval (0,1), we say
that {s,} is summable (L) to s and write lims,=s(L). (See [2].)

Concerning these methods we know the following theorems.

Theorem 1. If {s,} ts Cesaro summable (C,1) to s, then it is
summable (1) to the same sum. There is a sequence summable (1)
but mot summable (C,1). (See [3], p. 59, [5], p. 32.]

Theorem 2. If {s,} is Abel summable (A) to s, then it is sum-
mable (L) to the same sum. There is a sequence summable (L) but
not summable (4). (See [2], [3], p. 81.)

Here we establish the following theorems.

Theorem 3. If {s,} is summable (1) to s, then it is summable
(L) to the same sum.

Theorem 4. If {s,} is summable (I) to s, then

s,=o(n log n).

Furthermore if we put
8, =y t+a;+ - +a, (n>0),
we get
a,=o(n log n)

from the summability (1) of {s,}.

Theorem 5. There is a sequence summable (L) but not sum-
mable (I).

§2. Proof of Theorem 3. From (1) we get

to="50, tL1=8y,

t,logn= S 1 _Sa >2),
ogn=st ot tmr (n22)

or
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(3) t, log 2=s,+ 2L +3
t,logn—t, 1 —1)=_5n >3).
ogn 1og(n ) i (n>3)
Hence
(4) S fegun

log (1—x)a= n+1

——1—[30994- 5124 —S—ﬁ’-x3+§]{tn log n—t,_, log (n—l)}x"”}
log (1—) 3 n=3
——log 1—2) oac—l— 2Pty log 2—t, 2 x*—

—txt log 2+§tn(x"”——x"”) log n],
n=3
since, for 0<a<1,
lim¢,2"** log n=0

n—oco

from the assumption of this theorem. From (4) we get

. —1 28
5 1 n n+1
(5) g =0 a1 "

= lim =% =) g g
x-l,\l—o log(l x)g W2 log M.

Now we put
Y(@)=>2" log n,
n=3

V(@) =3t,a" log n,
n=3

_—log (1—x)
o(x) {— a(1—2) for 0<2<1
=1 for =0.
It is clear that (x) and (x) converge for 0<x<1, since lim¢,=s.
Further we have, for 0<x<1,

1 1,1
=1 (1 _> (1 =l _>2
o(x)=1+ +2w+ —|—2+3w+
Here we use the following

Lemma. If d,>0, ﬁdnzoo, idnac" and icnx" are both con-
n=0 n=0 n=0

=qa, —o <a< oo, then

vergent for 0<x<1, and if lim Cn

—00
” n

lim 226" _
e-1-0 S d,z"
For the proof see [4], pp. 175-177.
In this lemma we put
d, 1+ + +_ﬁ (n=>0),
and
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Co=0¢,=¢C,=0

c,=t,logn (n>3).
Since
log n

1
14+ 4...

lim

Nn—00

=1,

1
n+1

we get

lim Y4®) —lim ¢ =s,

2—1—0 g)(x) n—00
from the assumption of this theorem, whence the proof is complete
from (5).

Proof of Theorem 4. From (3) we get
s,=(n+1){t, logn—t, ;log (n—1)} (n>3).

Hence

8y _ (n+1) {t,,—t,mlog (n—l)} (n>3),
nlogn n logn

which tends to 0 as n—>co from the assumption of this theorem.

To prove the second part of this theorem we use the following
formula:

@, =8,—8,-1
=(n+1)t, log n—(2n+1)t,_, log (n—1)+nt,_, log (n—2).

Thus we can see similarly

lim— % _ —o.
nlogn

Proof of Theorem 5. We define the series ian and the sequence
n=0

8, =0yt a+ayt - ta, (n20)
by the following expression

oo
el/(1+x) — Eanxn .
n=0

This example is used to show the existence of the sequence which
is summable (4) but not summable (C, r) for any », »>—1. (See [3],
Theorem 56.) It is known that @, is not O(n") for any r, whence
{s,} is not summable (I) from Theorem 4. On the other hand {s,} is
summable (L) from Theorem 2.

This completes the proof.
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