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1. Introduction. Let E™ be an m-dimensional Euclidean space.
Let f(P) be a function L? in E* p=>1, and the kernel K has the
form
(L) K(P—Q)=|P—Q|"2[(P—Q)| P—Q|-1],
where Q2(P) is a function defined on 3] and satisfies the following
conditions:

(1.2) f 2(P)ds = 0,

where do is the area element on > and 3) denotes a surface of the
sphere of radius 1 with center at the origin,

(1.3) | 2(P)—2@) | =o( P-Q)),

and «(t) is an increasing function such that w(t)=t and

(14) f O] % ~ f" o <%>%t“ <o

Now we define the operation T by

(15) Tf=F(P)= [ K(P-Q)f (@00,

where ull .

(1.6) K«P—Q):{gf(f’—@ if |P—Q|=1/4,
elsewhere,

and dQ is the volume element of E™.

Then A. P. Calderén and A. Zygmund [1] (cf. also [4]) have proved
the following

Theorem 1. Let f(P) belong to L?, 1<p<oco. Then

@ FP) = lim /i(P)

exists a.e. If 1<p<oco, then we have also

(1.8) 1A=l IF1L= 4,0 £,
(1.9) lim || 7~Al, = 0,

and

(1.10) 17l =4, 11 f Nl where Fi(P)=supF(P).

The constant A, depends on p and the kernel K only.

We can extend this theorem for the class L* such that f(P) is
measurable and o(] f|) is integrable. @(u) is a continuous increasing
function for v=0 and satisfies the following conditions: ¢(0)=0,
and
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1.11) P(2u)=0(p(w)),

(1.12) 2 a=0( W) (1<r<e)
®) gr—o( 2™

(419 f Ll a=o(ZH)

for u—oo, and

(1.14) P(2u)=0(p(u)),

(115) | Gara=o(23- ) aerew),
®) g1 = (u)

s [ ao()

for u—0.

In particular, these conditions are satisfied if @(u)=u” or w?y(u),
l<p<r and Y(u) is a slowly varying function both for #—0 and
U—>o0,

Then we have

Theorem 2. Let f(P) belong to L* with this p(u). Then

(1.17) F(P) = lim AP

exists a.e. We have also -

(1.18) Ilﬁllq,éAq,Hfo, N Flle = 4011 £ Il
(1.19) lim IF=Fll, =0,

and

(1.20) Pl <A f Nl where Fu(P)=sup A(P).

The constant A, depends on the ¢ and the kermel K only.

2. Interpolation of the operation. The proof of Theorem 2
depends on the interpolation of the quasi-linear operation due to J.
Marcinkiewicz [2] and A. Zygmund [3]. Let R and S be two spaces
—for simplicity Euclidean spaces—with non-negative and completely
additive measures u and » respectively.

Then J. Marcinkiewicz and A. Zygmund have proved

Theorem 3. Suppose that w(R) and v(S) are finite, that 1=a<b
<o and that h=Tf is a quasi-linear operation simultaneously of
weak types (a,a) and (b, b). Suppose also that ¢(u) is a continuous
increasing function for u=0 and satisfies the following conditions:
@(0)=0 and

2.1) P2u)=0(p(%)),
®) ()
2.2) uf‘/t)mdt o(£))

(2.3) f P(t) dt= O< p(u) >

ta+1
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for u—>oco. Then h=Tf 1is defined for every f such that o(|f]) is
p-integrable, and we have

(2.4) Jollhhds=4 [#0£Ddn+B,

where the A, B are independent of f.

We now extend this theorem in the case where w(R) and »(S)
are both infinite:

Theorem 4. Suppose that w(R) and v(S) are both infinite, and
that a quasi-linear operation h=Tf is of weak types (a,a) and (b, b),
where 1<a<b<co. Suppose also that p(u) is a continuous increasing
Sunction for u=0 satisfying the conditions: (0)=0, (2.1), (2.2), (2.3)
Jfor u—>oco and further

25) P(2u)=0(p(w),
2.6) s %gﬂldt:o (%f%)),
@.7) [ 2D at=o0(28),

Jor u—>0. Then h=Tf is defined for every f such that o(|f|) is u-
integrable, and we have

2.8) Johdds= 4 [ Ddn,

where A is independent of f.

The existence of this theorem is indicated by A. Zygmund [3]
implicitly.

Proof of Theorem 4. Let f be any u-measurable function on R
such that ¢(|f]) is u-integrable, and let n(y) be the distribution fune-
tion of |k|, that is the v-measure of the set E,[|k|]={x]||h(x)|>y,
xeS}. Then we have

[ widew) = 3 nleae ) —pl2)= 3 98,

0
where 7;=n(127), §,=¢(12/*')—p(12’) and 1=38«"
For each fixed positive 7 we write

f=f1+f2+f37
where
fi=rf 1Z|fl<2, =0 elsewhere,
fo=f 2/=<\|f|, =0 elsewhere,
fi=f 0=Z|f]<1l, =0 elsewhere,
and

h=Tf, h,=Tf, 1=1,2,8.
Then we have f, e L*|JL?, f,eL® f,¢eL® respectively, and Tf is defined.
Since

3
E,i|h|] CHE’ﬂ[lhi]], 2=3* (k=1),



196 S. Koizuml [Vol. 34,

we have
n<M{z [IfPdpr2s [ dprer [1f,1d)
and . N -
%njsj<M(Sl+sz+ss), say.

Let ¢, be the p-measure of the set of such points # in R that
2i-1< f< 28 (4=0, =1, +2,..+), then we have from (2.1) and (2.2)

S=A [ Sy R={z|| f@|=1, zeR).
Similarly from (2.;; and (2.3) we have
S =4 [l £ Didp.
For S;, we have by (2.2) and (2.%2)
Si= 11 dp [ at <4 [ )iy Ri=(o] |£@)| <1, zeE).

tb+1

Next for negative j, we write

f=f4+fs+fe’
where
fi=f 2/=Z|f]<1l, =0 elsewhere,
fi=f 0=|f|<2, =0 elsewhere,
fe=f 1=|f], =0 elsewhere,
and

h=Tf, h=Tf, 1=4,5,86.

Then we have f,e L*JL’, fye L’ foeL” respectively, and Tf is defined,
and we have

nSM{z e £ dure- [IfPdpra-r [1£,1dp),
Fid B B

and

—1
jgwnj8j<M(S4+S5+SS)’ say.
And we have

Si=A [o(1f i
by (2.5) and (2.7), -
=4 [o(f s,
by (2.5) and (2.6), -
S.5417.ldn [ 2D a4 [0 dp,

by (2.7) and (2.3). Thus Theorem 4 is established.
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3. Proof of Theorem 2
Proof of (1.17). By (1.13) and (1.15) we have
u=Apu) uz=l,
WA 0=u<l.
And we decompose f into the sum of the f, and f, where f,=f if
| f]=1, =0 elsewhere and f,=f if |f|<1, =0 elsewhere. Then by

1.7, 71 and £, exist a.e. and F also does a.e.

Proof of (1.18). The first part now follows immediately by the
application of Theorem 4 with (1.18) and the following lemma due to
A. P. Calder6n and A. Zygmund [1].

Lemma 1. The operation Tf=f, of (1.5) is of weak type (1, 1)
or given an f=0 of L?, p=>1 and any number y >0, there is a sequence
of mon-overlapping cubes I, such that

1
f(PYPL2"y, (k=12,-.-:),
|Ik|;{

and f<y almost everywhere outside D,=JI,. Moreover |D,|<B’(y)
k
and

Y=

1 f f(P)AP<2my.
I D?l l Dy
And let f=0 belong to L*, 1<=p=2, in E", and let E, be the set
of points where the function (1.5) exceeds y in absolute value. Then

1B, 1<% [LA(P)dP+es W)
v,

where [f(P)], denotes the function equal to f if f=y and equal toy
otherwise, and ¢, and ¢, are constants independent of A.

The second part follows from the first part, (1.17) and the Fatou
lemma.

Proof of (1.19). This is proved by the well-known process.

Proof of (1.20). The proof runs on the line of the arguments of
Theorem 1 of Chap. II of A. P. Calderén and A. Zygmund [1]. We
only indicate, using the same notation,

Lemma 2. Let N(P) be a function in E™ and suppose that

|N(P)| <¢(| P—O])

where p(x) is a decreasing function of x such that

f¢(| P—O|)dP< co.

m
Let N,(P) be equal to 1 in the sphere of volume 1 and center at O,
and zero elsewhere; and let f| (P) be defined by

(3.1 FPy=swz [NXP-I|/@]dR.

Y=

Then we have
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sup | [ NAP—@1£(@dQ|=7(P) [#( P—0aP,
E™ E?
and the operation Tf=Ff is of weak type (1, 1) and of strong type
(o, p), (p>1).
Now we can apply Theorem 4 to (3.1), and lemmas which we need
are obtained. We cease to go into further.
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