Abstract
Let $E$ be an elliptic curve defined over a finite field $\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\ell > 3$ such that $q \equiv 1 \pmod{\ell}$ and $\ell \mid \# E(\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\mathbf{F}_{q}[x]$ of the $\ell^{k}$-division polynomials associated to $E$ with $k \geq 2$, extending the work of Verdure [6] for $k=1$.
Citation
Josep M. Miret. Daniel Sadornil. Juan Tena. Javier Valera. "A note on factorisation patterns of division polynomials of elliptic curves over finite fields." Proc. Japan Acad. Ser. A Math. Sci. 99 (8) 55 - 60, October 2023. https://doi.org/10.3792/pjaa.99.011
Information