Open Access
October 2023 A note on factorisation patterns of division polynomials of elliptic curves over finite fields
Josep M. Miret, Daniel Sadornil, Juan Tena, Javier Valera
Proc. Japan Acad. Ser. A Math. Sci. 99(8): 55-60 (October 2023). DOI: 10.3792/pjaa.99.011

Abstract

Let $E$ be an elliptic curve defined over a finite field $\mathbf{F}_{q}$, $q = p^{d}$, $p > 3$, and a prime number $\ell > 3$ such that $q \equiv 1 \pmod{\ell}$ and $\ell \mid \# E(\mathbf{F}_{q})$. In this paper we study the possible factorisation patterns over $\mathbf{F}_{q}[x]$ of the $\ell^{k}$-division polynomials associated to $E$ with $k \geq 2$, extending the work of Verdure [6] for $k=1$.

Citation

Download Citation

Josep M. Miret. Daniel Sadornil. Juan Tena. Javier Valera. "A note on factorisation patterns of division polynomials of elliptic curves over finite fields." Proc. Japan Acad. Ser. A Math. Sci. 99 (8) 55 - 60, October 2023. https://doi.org/10.3792/pjaa.99.011

Information

Published: October 2023
First available in Project Euclid: 4 October 2023

MathSciNet: MR4649989
Digital Object Identifier: 10.3792/pjaa.99.011

Subjects:
Primary: 11T06 , 14H52

Keywords: division polynomial , Elliptic curve , factorisation pattern , finite field

Rights: Copyright © 2023 The Japan Academy

Vol.99 • No. 8 • October 2023
Back to Top