Dohoon Choi, Youngmin Lee, Subong Lim, Jaegwang Ryu
Proc. Japan Acad. Ser. A Math. Sci. 99 (2), 19-22, (February 2023) DOI: 10.3792/pjaa.99.004
KEYWORDS: modular form, transcendental zero, Density, 11F11
Let $\Gamma$ be a congruence subgroup such that $\Gamma_{1}(N)\subset\Gamma\subset\Gamma_{0}(N)$ for some positive integer $N$. For a positive integer $k$, let $M_{k,\mathbf{Z}}(\Gamma)$ be the set of modular forms of weight $k$ on $\Gamma$ with integral Fourier coefficients. Let $R_{k}(\Gamma)$ be the set of common zeros in the upper half plane $\mathbf{H}$ of all the modular forms of weight $k$ on $\Gamma$. In this note, we prove that the density of modular forms in $M_{k,\mathbf{Z}}(\Gamma)$ with an algebraic zero $z \notin R_{k}(\Gamma)$ is zero.